Month	Temp above 83 degrees?	Est. Total hours	Est. Days above 83 degrees	Water demand per month	Unit	If water is used for 1500 hours/year, that equates to 63 days of water use, mostly
Jan	N	0	0		gallons/month	
Feb	N	0	0		gallons/month	22,050,000 GPY Annual demand
Mar	N	0	0		gallons/month	608 GPM for peak minute demand (assuming a peak factor of 2.5)
Apr	N	0	0		gallons/month	36,458 GPH for peak hour demand
May	N	0	0		gallons/month	875,000 GPD for peak day demand
Jun	y	300	14	4,900,000	gallons/month	350,000 GPD average day demand
Jul	y	800	31	10,850,000	gallons/month	
Aug	y	400	18	6,300,000	gallons/month	Assuming 60\% of incoming water gets evaporated, 40% turns into blowdown
Sep	N	0	0		gallons/month	8,820,000 GPY for annual discharge
Oct	N	0	0		gallons/month	243 GPM for peak minute discharge
Nov	N	0	0		gallons/month	14,583 GPH for peak hour discharge
Dec	N	0	0		gallons/month	350,000 GPD for peak day discharge
TOTAL		1,500	63	22,050,000	gallons/YEAR	140,000 GPD for average day discharge

22 million Gallons per year $=67.56$ acre/ft per year.

