

700 NE 55th Avenue Portland, OR 97203 P (503) 659-3281 Terracon.com

May 2, 2023

Rowan Percheron, LLC 1330 Post Oak Boulevard, Suite 1350 Houston, Texas 77056

Attn: Joel Zemanek

- P: 231-463-6079
- E: jzemanek@rowandigit.al
- Re: Geotechnical Engineering Report Percheron Data Center Tower Road Morrow County, Oregon Terracon Project No. 82225118

Dear Mr. Zemanek:

We have completed the scope of Geotechnical Engineering services for the above referenced project in general accordance with Terracon Proposal No. P82225118 dated February 6, 2023. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and floor slabs for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely,

Terracon

- 7.1°

Ryan T. Houser, CEG Project Geologist

Kristopher T. Hauck, P.E. Senior Principal | Office Manager

Table of Contents

Report Summary	i
Introduction	
Project Description	
Site Conditions	
Geotechnical Characterization	
Geology	4
Seismic Hazards	5
Nearby Faults	5
Groundwater Conditions	6
GeoModel	7
Corrosivity	8
Thermal Resistivity Results	9
Geotechnical Overview	10
Collapsible (Loess) Soils	. 10
Shallow Bedrock	. 11
Reuse of Site Soils	. 12
Liquefiable Soils	. 12
General	. 12
Earthwork	13
Site Preparation	. 13
Subgrade Preparation	. 13
Bedrock Excavations	. 14
Fill Material Types	
Fill Placement and Compaction Requirements	
Dewatering	
Utility Trench Backfill	. 20
Grading and Drainage	. 20
Earthwork Construction Considerations	
Construction Observation and Testing	
Seismic Considerations	
Seismic Site Class	22
Data Center Building Area Site Class	22
Substation Area Site Class	
Seismic Design Parameters	
Liquefaction	
Liquefaction Lateral Movement	
Ground Improvement	
Removal and Recompaction	
Aggregate Piers	
Dynamic Compaction (DC)	
Rapid Impact Compaction (RIC)	. 26

Į.

Design-Build Contractors	
Geotechnical Review	
Shallow Foundations	
Design Parameters – Compressive Loads	
Footing Drains	
Foundation Construction Considerations	
Floor Slabs	
Floor Slab Design Parameters	
Floor Slab Construction Considerations	
Mat Foundations - Tanks	
Deep Foundations – Substation Elements	
Lateral Earth Pressures	
Design Parameters	
Subsurface Drainage for Below-Grade Walls	
Pavements	
General Pavement Comments	
Pavement Design Parameters	
Pavement Section Thicknesses	
Pavement Maintenance	
Stormwater Management	
Subsurface Variations	
Construction Considerations	
Maintenance of Facilities	
General Comments	

Diagrams

Diagram 1: Over Excavation Backfill with Lean Concrete	30
Diagram 2: Over Excavation Backfill with Structural Fill	31
Diagram 3: Retaining Wall Restraint Conditions	34
Diagram 4: Retaining Wall Backfill and Drain Placement	35

Tables

Table 1: Project Description	2
Table 2: Site Conditions	
Table 3: Nearby Faults	6
Table 4: Groundwater Conditions	6
Table 5: GeoModel	
Table 6: Corrosivity Test Results Summary	8
Table 7: Laboratory Thermal Resistivity Testing Summary	9
Table 8: Structural Fill Criteria	
Table 9: Fill Compaction Requirements	

Table 10: Data Center Building Area Site Class	
Table 11: Seismic Design Parameters	
Table 12: Shallow Foundation Design Parameters	
Table 13: Floor Slab Design Parameters	
Table 14: Lateral Earth Pressure Design Parameters	
Table 15: Asphaltic Concrete Design	
Table 16: Portland Cement Concrete Design	

Figures

Site Location Plan Exploration Plan Topographic Plan Section A-A' Section B-B' Section C-C' Section D-D'

Attachments

Exploration and Testing Procedures Photography Log Exploration and Laboratory Results Supporting Information

Note: This report was originally delivered in a web-based format. **Blue Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the **Derracon** logo will bring you back to this page. For more interactive features, please view your project online at client.terracon.com.

Refer to each individual Attachment for a listing of contents.

1ii

jerracon

Report Summary

Topic ¹

Project Description

Overview Statement²

Site consists of a single 275-acre parcel. Project consists of construction of four, 225,000-square-foot data center buildings, a power substation, security guard house, generator yards, retention ponds, and associated pavements.

Data Center Building Area: The surface soils underlying the data center area consisted of a thin mantle of rooted topsoil underlain by loose silty sand and silt soils up to about 15 feet below the ground surface (bgs). These soils are interpreted to be wind-blown (loess) deposits and are susceptible to collapse. The loess was generally underlain by dense to very dense cemented silty sand soils and basalt bedrock. Basalt bedrock was encountered in the data center building area at depths as shallow as 2 feet bgs. Perched groundwater was observed in one boring in the data center building area at a depth of about 22½ feet bgs.

Geotechnical Characterization

Loess Soils

Collapse Risk

Substation and Guard House Area: The substation and guard house area was generally underlain by the same materials as described above, with the exception of one boring that did not encounter bedrock. In this boring (SS-3), subsurface materials consisted of loess extending to about 15 feet bgs, underlain by flood deposits consisting of silty sand, sand, and elastic silt to the full depth explored (61½ feet bgs). Groundwater was encountered in this area ranging from 6½ to 9½ feet bgs.

The near surface loess soils exhibit moderate risk collapsible and the deeper soils exhibit negligible to slight risk collapsible soils. The collapse of the "honeycomb" structure is typically instigated by wetting and loading or overstressing from the loading without wetting. Therefore, we recommend mitigation of the collapse risk by removing and replacing the shallow loess soils or performing ground improvement of these soils within the proposed building areas.

Ground improvement is also recommended where total settlements for duct banks and utilities outside of the data center building pads must not exceed 1 inch.

Geotechnical Engineering Report

Percheron Data Center | Morrow County, Oregon May 2, 2023 | Terracon Project No. 82225118

Topic ¹	Overview Statement ²
58	We understand the data center pads will be developed by maintaining a building pad with 7 to 10 feet of excavatable material for installation of underground utilities (i.e. 7 to 10 foot separation from bedrock). Depending on finish grades, this likely will require removal of basalt bedrock, which was encountered as shallow as 2 feet bgs in our explorations. Amount of rock excavation is not known, since the grading plan is currently in development.
Earthwork	Much of the site surficial soils consist of low-density material, we expect significant shrinkage that should be accounted for in the grading planning from excavation to placement and compaction of the loess materials.
	The moisture content of the in-situ material is significantly below optimum moisture content and will require moisture conditioning in order to be able to be compacted in accordance with the compaction requirements. It is possible that a significant water import to the site will be needed.
Shallow Foundations	Shallow foundations can be used to support the structures following mitigation of the loess soils and/or ground improvements.
Deep Foundations	Cast-in-place reinforced concrete drilled shafts may be used to support the planned dead-end support structures for the substation.
Pavements	With a minimum of 12 inches of scarified and compacted subgrades prepared as noted in Earthwork, typical pavement section can be expected for this development.
General Comments	This section contains important information about the limitations of this geotechnical engineering report.
	r is reviewing this report as a pdf, the topics above can be used to ppropriate section of the report by simply clicking on the topic itself.

2. This summary is for convenience only. It should be used in conjunction with the entire report for design purposes.