Month	Temp above 83 degrees?	Est. Total hours	Est. Days above 83 degrees	Water demand per month	Unit
Jan	N	0	0	-	gallons/month
Feb	N	0	0	-	gallons/month
Mar	N	0	0	-	gallons/month
Apr	N	0	0	-	gallons/month
May	N	0	0	-	gallons/month
Jun	y	300	14	4,900,000	gallons/month
Jul	y	800	31	10,850,000	gallons/month
Aug	y	400	18	6,300,000	gallons/month
Sep	N	0	0	-	gallons/month
Oct	N	0	0	-	gallons/month
Nov	N	0	0	-	gallons/month
Dec	N	0	0	-	gallons/month
TOTAL		1,500	63	22,050,000	gallons/YEAR

22 million Gallons per year $=67.56$ acre/ft per year.

If water is used for 1500 hours/year, that equates to 63 days of water use, mostly during the summe

$22,050,000$	GPY	Annual demand
608	GPM	for peak minute demand (assuming a peak factor of 2.5)
36,458	GPH	for peak hour demand
875,000	GPD	for peak day demand
350,000	GPD	average day demand

Assuming 60\% of incoming water gets evaporated, 40\% turns into blowdown
8,820,000 GPY for annual discharge
243 GPM for peak minute discharge
14,583 GPH for peak hour discharge
350,000 GPD for peak day discharge
2140,000 GPD for average day discharge

