#### MORROW COUNTY BOARD OF COMMISSIONERS MEETING AGENDA

#### Wednesday, May 4, 2022 at 9:00 a.m.

#### **Bartholomew Building Upper Conference Room**

#### 110 N. Court St., Heppner, Oregon

Zoom Meeting Information on Page 2

#### AMENDED

- 1. Call to Order and Pledge of Allegiance 9:00 a.m.
- 2. City/Citizen Comments: Individuals may address the Board on topics not on the agenda
- 3. Open Agenda: The Board may introduce subjects not on the agenda

#### 4. Consent Calendar

- a. Approve Accounts Payable and Payroll Payables
- b. Planning Commission Appointment Request

#### 5. Business Items

- a. Columbia Development Authority Update (Greg Smith)
- b. Nitrate Testing Update
- c. Proposed Collaborative Action between the Morrow County Public Health and the Morrow County Health District
- d. Discussion: Interchange Area Management Plan Adoption Fees
- e. Federal Emergency Management Agency (FEMA) Exercise Summary (Paul Gray, Emergency Manager)
- f. Letter of Support Beef Processing Facility in Umatilla County
- g. Discussion Original Intent of Strategic Investment Program (SIP) Funds (Chair Doherty; Jaylene Papineau, Treasurer; Justin Nelson, County Counsel)
- h. Columbia River Enterprise Zone III Update

#### 6. Department Reports

- a. Assessment & Tax Quarterly Report (Mike Gorman)
- b. Sheriff's Office Monthly Report (Melissa Ross)
- c. Administrator's Monthly Report (Darrell Green)

#### 7. Correspondence

- 8. Commissioner Reports
- 9. Signing of documents
- 10. Adjournment

Agendas are available every Friday on our website (<u>www.co.morrow.or.us/boc</u> under "Upcoming Events"). Meeting Packets can also be found the following Monday.

The meeting location is accessible to persons with disabilities. A request for an interpreter for the hearing impaired or for other accommodations for persons with disabilities should be made at least 48 hours before the meeting to Roberta Lutcher at (541) 676-5613.

Pursuant to ORS 192.640, this agenda includes a list of the principal subjects anticipated to be considered at the meeting; however, the Board may consider additional subjects as well. This meeting is open to the public and interested citizens are invited to attend. Executive sessions are closed to the public; however, with few exceptions and under specific guidelines, are open to the media. The Board may recess for lunch depending on the anticipated length of the meeting and the topics on the agenda. If you have anything that needs to be on the agenda, please notify the

Board office before noon of the preceding Friday. If something urgent comes up after this publication deadline, please notify the office as soon as possible. If you have any questions about items listed on the agenda, please contact Darrell J. Green, County Administrator at (541) 676-2529.

### **Zoom Meeting Information**

https://zoom.us/j/5416762546 PASSWORD: 97836 Meeting ID: 541-676-2546

Zoom Call-In Numbers for Audio Only Using Meeting ID 541-676-2546#:

- 1-346-248-7799
- 1-669-900-6833
- 1-312-626-6799

- 1-929-436-2866
- 1-253-215-8782
- 1-301-715-8592



# AGENDA ITEM COVER SHEET

Morrow County Board of Commissioners (Page 1 of 2)



#### Please complete for each agenda item submitted for consideration by the Board of Commissioners (See notations at bottom of form)

 Presenter at BOC: Tamra Mabbott
 Date submitted to reviewers: 4-27-22

 Department: Planning Department
 Requested Agenda Date: 5-4-22

 Short Title of Agenda Item:
 Planning Commission Appointment Request

| <b>This Item Involves:</b> (Check all that apply for this meeting.) |                             |  |  |
|---------------------------------------------------------------------|-----------------------------|--|--|
| Order or Resolution                                                 | Appointments                |  |  |
| Ordinance/Public Hearing:                                           | Update on Project/Committee |  |  |
| 🔲 1st Reading 🔄 2nd Reading                                         | Consent Agenda Eligible     |  |  |
| Public Comment Anticipated:                                         | Discussion & Action         |  |  |
| Estimated Time:                                                     | Estimated Time:             |  |  |
| Document Recording Required                                         | Purchase Pre-Authorization  |  |  |
| Contract/Agreement                                                  | Other                       |  |  |
|                                                                     |                             |  |  |
|                                                                     |                             |  |  |

| N/A Purcha                              | se Pre-Authorizations, Contracts & Agreements |  |
|-----------------------------------------|-----------------------------------------------|--|
| Contractor/Entity:                      |                                               |  |
| Contractor/Entity Address:              |                                               |  |
| Effective Dates – From:                 | Through:                                      |  |
| Total Contract Amount:                  | Budget Line:                                  |  |
| Does the contract amount exceed \$5,000 | ? 🔲 Yes 📕 No                                  |  |
|                                         |                                               |  |

| Reviewed By:  |                 |                                       |                                                                                                                      |
|---------------|-----------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Tamra Mabbott | 4-26-22<br>DATE | Department Director                   | Required for all BOC meetings                                                                                        |
| Damer         |                 | dministrator                          | Required for all BOC meetings                                                                                        |
| 1             | DATE            | County Counsel                        | *Required for all legal documents                                                                                    |
| y             |                 | Finance Office                        | *Required for all contracts; other                                                                                   |
|               | DATE            | 3                                     | items as appropriate.                                                                                                |
|               |                 | Human Resources                       | *If appropriate                                                                                                      |
|               | DATE            | Anow I week for review (subline to an | simultaneously). When each office has notified the submitting<br>the request to the BOC for placement on the agenda. |

<u>Note</u>: All other entities must sign contracts/agreements before they are presented to the Board of Commissioners (originals preferred). Agendas are published each Friday afternoon, so requests must be received in the BOC Office by 1:00 p.m. on the Friday prior to the Board's Wednesday meeting. Once this form is completed, including County Counsel, Finance and HR review/sign-off (if appropriate), then submit it to the Board of Commissioners Office.

### **AGENDA ITEM COVER SHEET**

Morrow County Board of Commissioners

(Page 2 of 2)

### 1. ISSUES, BACKGROUND, DISCUSSION AND OPTIONS (IF ANY):

Planning Commission is a nine position commission serving the County as a whole. Position #1 became vacant as Mifflin Devin's term expired 12/31/21. Board of Commissioners did make a previous appointment to fill this position; the individual later withdrew.

Attached is a letter of interest for Position #1 From Mary Killion who lives in the Boardman area. Ms. Killion has shown interest in Planning Commission decisions, asking questions, and requesting further information and submitted a letter. See attached.

Current Positions and Terms are as follows:

| Position #1 Boardman | Vacant           | Term 1/01/22 - 12/31/25                |
|----------------------|------------------|----------------------------------------|
| Position #2 Heppner  | Brian Thompson   | Term 2/25/20 - 12/31/23 - Reappointed  |
| Position #3 Irrigon  | Stanley Anderson | Term 12/16/20 - 12/31/24 - Reappointed |
| Position #4 Ione     | Rod Taylor       | Term 1/01/22 - 12/31/25 - Reappointed  |
| Position #5 Irrigon  | Jeff Wenholz     | Term 1/01/18 - 12/31/22 - Reappointed  |
| Position #6 Heppner  | Greg Sweek       | Term 12/12/18 - 12/31/22 - Reappointed |
| Position #7 At-large | Wayne Seitz      | Term 2/25/20 - 12/31/23 - Reappointed  |
| Position #8 Ione     | Staci Ekstrom    | Term 2/25/20 - 12/31/23 - Reappointed  |
| Position #9 Boardman | Karl Smith       | Term 1/01/22 - 12/31/25 - Reappointed  |

### 2. FISCAL IMPACT:

NA

#### 3. SUGGESTED ACTION(S)/MOTION(S):

Motion to appoint Mary Killion to Position #1 (Boardman) on the Morrow County Planning Commission, Term beginning May 5, 2022 to December 31, 2025.

Attach additional background documentation as needed.

#### April 26, 2022

Dear Morrow County Board of Commissioners;

Please accept this letter as my official interest in being considered for the vacant position on the planning commission.

In lieu of a resume, I will briefly outline my reasons for wishing to be considered for this position, as well as give you a brief personal history.

My husband and I moved to Morrow County in 2002. Prior to living here, we had spent 2 years in Hermiston, 5 years in El Centro, CA and a year in Connell, WA. We have raised 4 children here- 2 have graduated from high school after attending K-12 in Morrow County School District, 2 are still in school in Boardman. We own a few acres outside of Boardman and value the lifestyle that Morrow County offers.

I am currently in my 2<sup>nd</sup> term on Morrow County School District Board of Directors, and I also serve as President of the Boardman Food Pantry. Being involved in these two entities has been both rewarding and challenging. Before submitting this letter, I considered the amount of time and my own ability to serve all these positions fully as well as affirmed that there were no conflicts of interest.

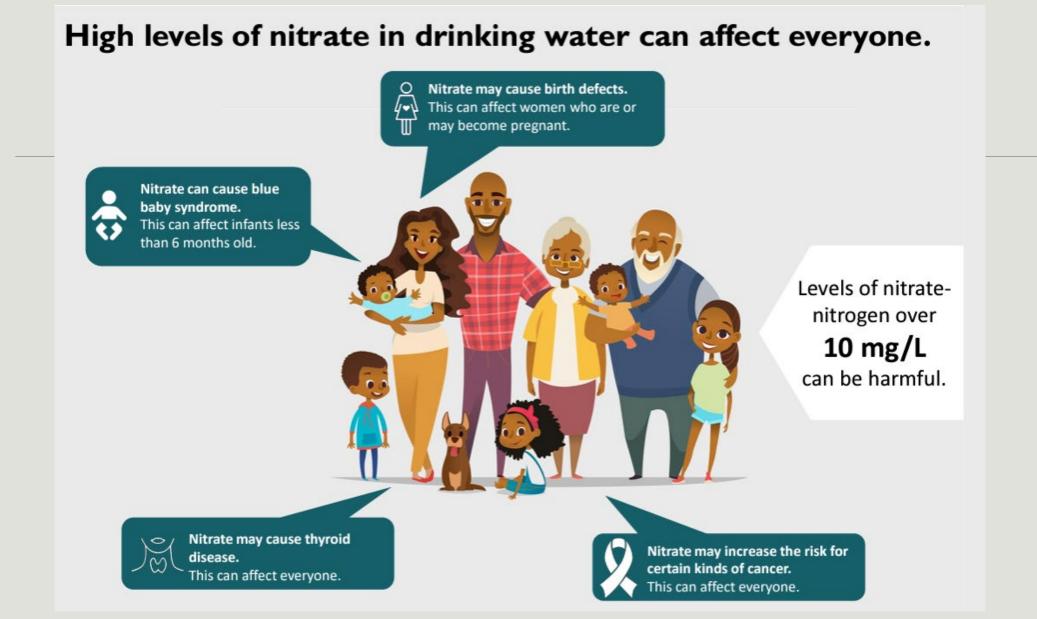
The driving reason for wanting to serve on the planning commission is that I have a lot of questions about the direction Morrow County is heading. Nobody is able or willing to answer these questions. Without any explanation or answers to where Morrow County is headed, I have struggled to feel comfortable making any personal plans. I have questioned whether our home for last 20 years is going to continue to be our home in the future. The only answer I could find to my own questions was to become involved in the planning.

If you are looking for a list of qualifications, the only one I have is my desire to be involved. There was a brief stint as a realtor when we lived in California, but really, I do not have a comprehensive knowledge of the laws or governances that Morrow County follows. My desire to serve my community and Morrow County is my strongest asset. I am open to all the advice, assistance, and guidance that the current members are willing to share. If you are willing to consider me for the vacant position, I would work hard to catch up with the rest of the board on knowledge and understanding of the appropriate information so I can contribute effectively.

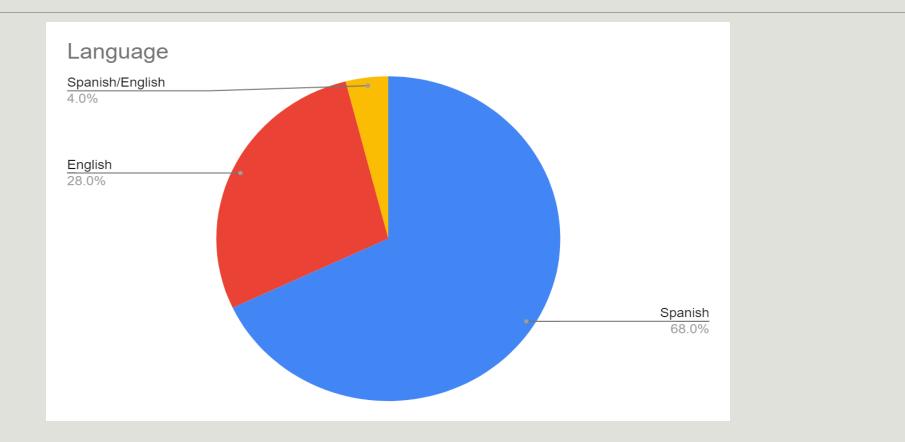
Morrow County is a unique and special place, and it is my desire to see it prosper and thrive for future generations.

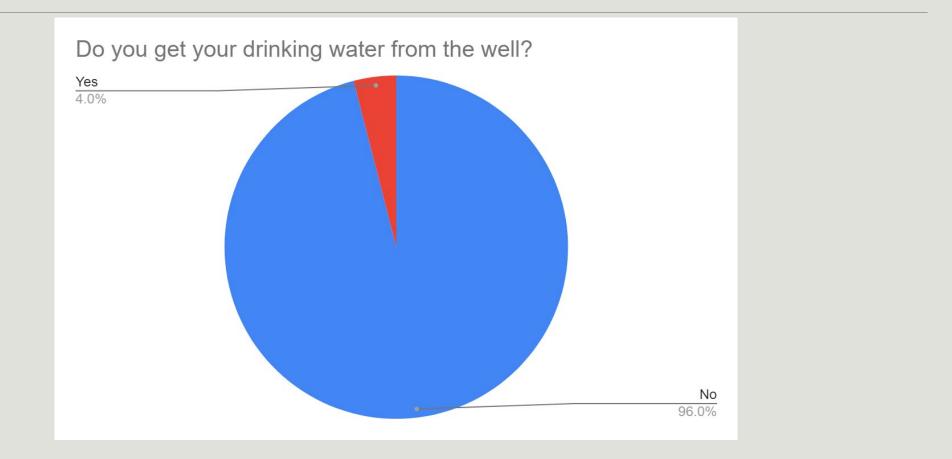
I appreciate the opportunity to be considered for the vacant position on the planning commission board.

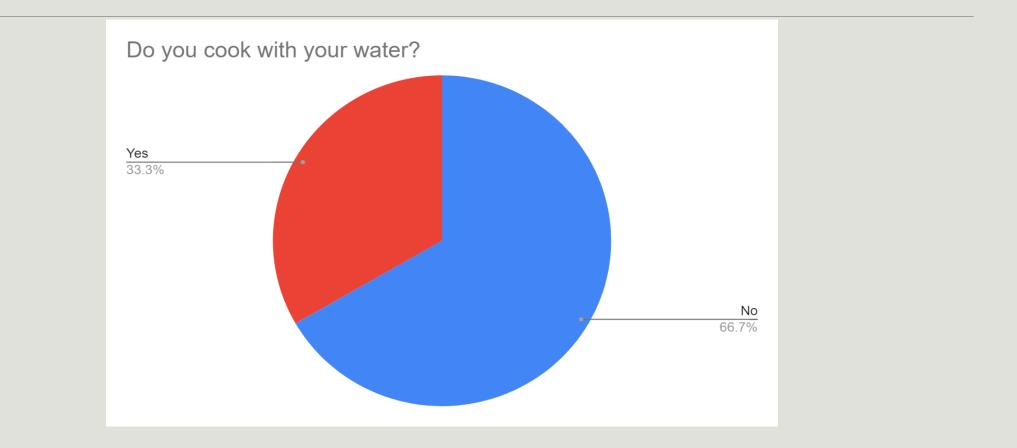
Please feel free to contact me with any questions, concerns, or comments.

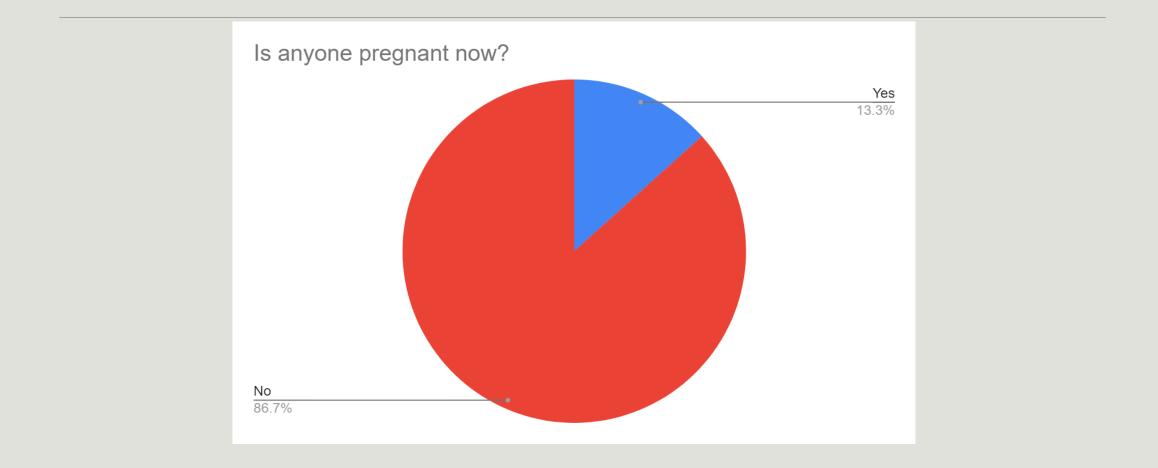

Sincerely,

Mary A. Killion



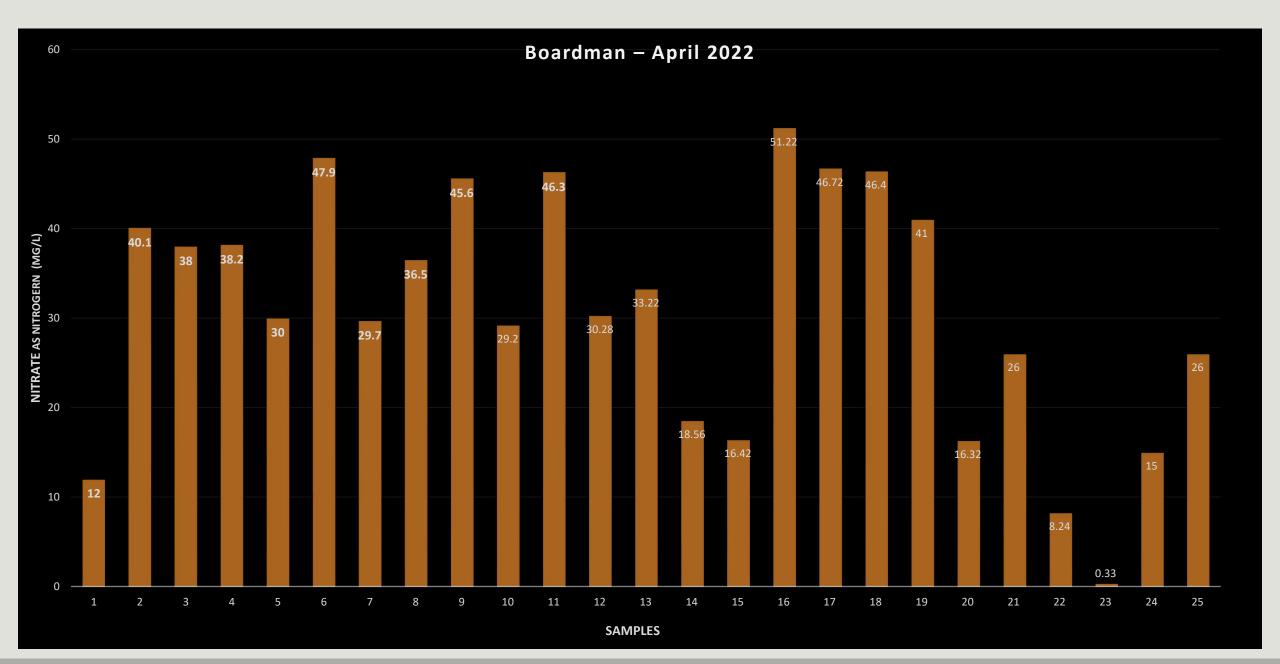





Ana Pineyro - Communicable Disease and Emergency Preparedness Coordinator




DHS Wisconsin P-02559 (12/2019)










# Interpreting your nitrate results

| Nitrate results                 | Water use                                                                                                                                                                                                                                                                                        | Recommendation                                                                                                                                                                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 ppm (mg/L)<br>or less        | SAFE for all uses.<br>Concentrations above 4 ppm may indicate<br>contamination.                                                                                                                                                                                                                  | Test water at least once a year.                                                                                                                                                                                                                      |
| Between 11 and<br>40 ppm (mg/L) | <ul> <li>NOT SAFE for babies or women who are or may become pregnant.</li> <li>SAFE for short term use* by healthy adults (<i>except pregnant women</i>), pets and livestock.</li> <li>SAFE for other domestic uses, including bathing, washing dishes, laundry or garden irrigation.</li> </ul> | Use bottled water or water from a safe<br>source. Do not boil the water.<br>Supervise children to help them avoid<br>swallowing water while bathing, brushing<br>teeth, etc.<br>Contact your local drinking water specialist<br>for treatment advice. |
| More than 40 ppm<br>(mg/L)      | NOT SAFE for drinking.<br>SAFE for other domestic uses, including bathing,<br>washing dishes, laundry or garden irrigation.                                                                                                                                                                      | Contact your local drinking water specialist for treatment advice.                                                                                                                                                                                    |



|                                     | Know your water-         |
|-------------------------------------|--------------------------|
| Private Well Water<br>Morrow County |                          |
| apineyro@co.morrow.or.us (not       | t shared) Switch account |
| Name<br>Your answer                 |                          |
| Phone #<br>Your answer              |                          |
| Address<br>Your answer              |                          |
| Language<br>O Spanish<br>O English  |                          |

| 22, 3.30 F | NI .                             |          |
|------------|----------------------------------|----------|
|            | O Others                         |          |
|            |                                  |          |
|            |                                  |          |
|            | Race/Ethnicity                   |          |
|            | O Hispanic/Latinx                |          |
|            | O White alone non Hispanic       |          |
|            |                                  |          |
|            | How many people live here?       |          |
|            | Your answer                      |          |
|            |                                  |          |
|            | Babies under the age of 6 months |          |
|            | O Yes                            |          |
|            | O No                             |          |
|            |                                  |          |
|            | Is anyone pregnant now?          |          |
|            | O Yes                            |          |
|            | O No                             |          |
|            | How long have you lived here?    |          |
|            | O Less than a year               | <b>,</b> |

| 22, 3.30 Pivi | Λ                                         |       |
|---------------|-------------------------------------------|-------|
|               | O 1 - 3 years                             |       |
|               | O More than 3 years                       |       |
|               |                                           |       |
|               |                                           |       |
|               |                                           |       |
|               | Do you share a well?                      |       |
|               | O Yes                                     |       |
|               | O No                                      |       |
|               |                                           |       |
|               | Do you get your drinking water from the w | vell? |
|               |                                           |       |
|               | Yes                                       |       |
|               | O No                                      |       |
|               |                                           |       |
|               | Do you have a working filter?             |       |
|               | O Yes                                     |       |
|               | O No                                      |       |
|               |                                           |       |
|               | What type of filter                       |       |
|               |                                           |       |
|               | Your answer                               |       |
|               |                                           |       |
|               | How much did you spend on it?             |       |
|               | Your answer                               |       |

| Do | VOU | cook | with   | vour | water? |
|----|-----|------|--------|------|--------|
|    | you | COOK | vvicii | your | water. |

) Yes

) No

Do you buy water, How much do you spend monthly?

Your answer

| If there are children in the household de  | vou maka formula with the water?  |
|--------------------------------------------|-----------------------------------|
| If there are children in the household, do | you make formula with the water : |

🔵 Yes

) No

Do you have any health concerns related to:

| Fatigue          |
|------------------|
| Nauseas          |
| Headaches        |
| Abdominal cramps |
| Weight gain      |
| Drv skin         |

|   | L Thyroid                                                                                                            |                  |
|---|----------------------------------------------------------------------------------------------------------------------|------------------|
|   | Cancer, what type?                                                                                                   |                  |
|   | Loss of a pregnancy                                                                                                  |                  |
|   | Birth defect                                                                                                         |                  |
|   |                                                                                                                      |                  |
|   |                                                                                                                      |                  |
|   | Comments/Notes                                                                                                       |                  |
|   | Your answer                                                                                                          |                  |
|   |                                                                                                                      |                  |
|   |                                                                                                                      |                  |
|   | Results 2022                                                                                                         |                  |
|   | Your answer                                                                                                          |                  |
|   |                                                                                                                      |                  |
|   | Submit                                                                                                               | Clear form       |
| N | lever submit passwords through Google Forms.                                                                         |                  |
|   | This content is neither created nor endorsed by Google. <u>Report Abuse</u> - <u>Terms of Service</u> - <u>Priva</u> | <u>cy Policy</u> |
|   |                                                                                                                      |                  |



1



# **Nitrate in Drinking Water**

# What is nitrate and where does it come from?

Nitrate is a naturally occurring oxide of nitrogen. Nitrogen is present in the air and reacts with oxygen and ozone to produce nitrate. Nitrate is an essential component of living things and is a major part of animal manure, human sewage waste and commercial fertilizers. Nitrates can be associated with septic systems and have been used for centuries as fertilizers, in explosives, and as food preservatives.

# How can nitrate affect my health?

Nitrate is a potential health hazard. Drinking water with high levels of nitrate can cause health effects such as:

- Blue baby syndrome (or Methemoglobinemia) which is a decreased ability of blood to carry oxygen to tissues. Blue baby syndrome is shown by blueness of the skin. Symptoms especially in infants can develop rapidly with health deteriorating over a period of days requiring immediate medical attention.
- There is also potential increased risk of:
  - Recurrent respiratory infections,
  - Thyroid dysfunction,
  - Negative reproductive outcomes such as spontaneous abortion, and
  - Certain cancers including cancer of the stomach or bladder.

# When does nitrate in drinking water become a health concern?

Nitrate is measured in milligrams per liter (mg/L)\*. The federal government has established a safe drinking water standard (also called maximum contaminant level) for nitrate as 10 mg/L.

If your water has nitrate levels above 10 mg/l, **do not give the water to infants under 6 months old or use it to make infant formula**. It is advisable to switch to bottled water or other water low in nitrate. If you are pregnant or have specific health concerns, you may wish to consult your doctor.

Nitrate occurs naturally in surface water and groundwater at concentrations up to 1 to 2 mg/L. At these levels, nitrate is not considered harmful to health.

\*Nitrate is also measured in parts per million or ppm. For example, 1 mg/L is the same as 1 ppm.

# Safely using nitrate-contaminated water

# Can I wash my food with nitrate-contaminated water?

If nitrate levels in your water are above 10 mg/L, do not use water to wash, prepare, and cook food for infants below the age of six months. It is advisable to use bottled water or other water low in nitrate.

### Can I irrigate or water my garden with nitrate-contaminated water?

Yes.

### What about bathing and showering?

Nitrate does not easily enter the body through the skin. Bathing, swimming and showering with water that has levels of nitrate over 10 mg/L is safe as long as you avoid swallowing the water. Supervise children under six months of age when they are bathing and brushing teeth to ensure they do not swallow the water.

### What about washing dishes, utensils, and food preparation areas?

Only a very small amount of water clings to smooth surfaces, such as dishes. Water having more than 10 mg/L of nitrate can be safely used to wash and sanitize dishes, tables and eating utensils.

### What about general cleaning and laundry?

Very little water remains on washed surfaces and in laundered fabrics. Because these articles are not placed in the mouth, water with nitrate above 10 mg/L can be safely used for general cleaning and washing of clothing, bedding, and linens.

### What about my pets?

1.

Nitrate affects young animals the same way as human infants and should not drink water with nitrate more than 10 mg/L.

# Learning about nitrate levels in your drinking water

### For people on municipal or public water systems

Public drinking water providers are required to monitor for nitrate and ensure levels remain below the drinking water standard of 10 mg/L. They are also required to make those results public. If your water comes from a public water system, you can find results on the Oregon Drinking Water Services <u>Data</u> <u>Online</u> website. Your drinking water provider may also be required to provide a Consumer Confidence Report to its customers every year. This report contains the most recent nitrate test results. Contact your drinking water provider for a copy of the most recent consumer confidence report.

### For private well owners

If your drinking water comes from your own well, you will have to find an accredited laboratory that does water testing for private property owners. These labs can provide information and instructions for getting your well water tested. For a list of accredited laboratories for drinking water in Oregon, contact the <u>Oregon Environmental Laboratory Accreditation Program</u> (ORELAP) or view the <u>Oregon Accredited Laboratory Lists</u> online.

Water containing 5 to 10 mg/L nitrate as nitrogen should be tested every three months for at least one year to determine whether levels are increasing or vary seasonally. Since nitrate levels can vary over time, annual testing is advised at a minimum for all drinking water sources.

# **Removing nitrate from drinking water**

# Do not boil the water!

Boiling contaminated water does not remove nitrate and can increase nitrate levels.

# For public drinking water system operators

Nitrate can be reduced or removed entirely from drinking water, but treatment processes are expensive and require careful maintenance and monitoring. Current treatment methods include ion exchange resins, reverse osmosis, electrodialysis and either biological or chemical denitrification. If treatment is not possible for your system, you should consider developing a different water source, blending with a different source, or connecting to another safe water source in the area. Water that is to be used for drinking, beverage-making or food preparation should be obtained from a known safe source and used on a temporary basis. Non-ingestion uses of water pose fewer hazards but are not entirely safe if nitrate levels are significantly above the drinking water limit. Before deciding on treatment equipment, contact <u>Oregon Drinking Water</u> <u>Services</u> for information and advice.

# Private well treatment options:

First, make sure that you are not contributing to the problem. Take action to prevent nitrate sources on your property from contaminating your own groundwater (e.g., properly maintain your septic system, reduce fertilizer use within 100 feet of the well, and move livestock or manure piles away from the well area). Non-treatment options include developing a different water source, blending in water from another source, or connecting to another safe water source in the area.

Several treatment methods can remove nitrate from drinking water, including ion exchange and reverse osmosis; ion exchange is the most common.

Be sure that any treatment system used is certified by a recognized, thirdparty testing organization that meets strict testing procedures established by the <u>American National Standards Institute (ANSI)</u> and <u>National Sanitation</u> <u>Foundation (NSF) International</u>. Proof of certification should be available from the distributor or manufacturer. Alternatively, NSF certification for various treatment units may be verified through NSF or the <u>Water Quality</u> <u>Association</u>.

Treatment equipment must be carefully maintained to work properly and may not be effective if nitrate levels are very high. Treated and untreated water should be tested at least once a year. With treatment, testing should be done yearly at the point of use (e.g., kitchen faucet) and every three years at the well head.

# For more information

Ł.

(#)

- Private well owners with health-related questions about nitrate in their water may call 971-673-0440 or email <u>domestic.wells@state.or.us</u>.
- Agency for Toxic Substances & Disease Registry Nitrate

Oregon Health Authority – Drinking Water Services 800 NE Oregon Street, Suite #640, Portland, OR 97232-2162, (971) 673-0405 http://healthoregon.org/dwp | info.drinkingwater@dhsoha.state.or.us

# Nitrate in well water: What you should know

Nitrate is a naturally occurring form of nitrogen that has no color, smell or taste. It is an essential component of living things. Although nitrate can occur naturally in groundwater, high levels are often associated with human activities. Nitrate is a major part of animal manure, human sewage waste and commercial fertilizers. Nitrate in your well water is a potential health hazard.

# Nitrate and your health

Presence of nitrates in drinking water can cause a variety of long- and shortterm effects. Infants are at a particularly strong risk for blue baby syndrome. with some cases resulting in death.

# Nitrate and your well water

The only way to know if you have nitrate in your well water is to test. Contact an accredited laboratory for specific instructions on how to collect, store and send the sample. The test will cost between \$20-\$40. To find accredited labs in Oregon, visit www.healthoregon.org/wells.

Nitrate is measured in parts per million (ppm) or milligrams per liter (mg/L) (1 mg/L = 1 ppm). Nitrate occurs naturally in surface and groundwater at concentrations up to 1-2 mg/L and is not harmful at these levels. The safe drinking water standard (also called maximum contaminant level or MCL) for nitrate is 10 mg/L. If your water has nitrate levels above 10 mg/L, you should switch to bottled water or another source of safe drinking water and seek treatment options.



You should test for nitrate at least once a year.

# For more information:

- Private well owners with health-related questions about nitrate in their water, well maintenance and testing recommendations. call 971-673-0977 or email domestic.wells@state.or.us.
- For questions about treatment options for your domestic well, contact the drinking water specialist at your local health department (http://tinyurl. com/DWcontacts).

| Nitrate results                 | Water use                                                                                                                                                                                                                                                                                        | Recommendation                                                                                                                                                                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 ppm (mg/L)<br>or less        | <b>SAFE</b> for all uses.<br>Concentrations above 4 ppm may indicate contamination.                                                                                                                                                                                                              | Test water at least once a year,                                                                                                                                                                                                                      |
| Between 11 and<br>40 ppm (mg/L) | <ul> <li>NOT SAFE for babies or women who are or may become pregnant.</li> <li>SAFE for short term use* by healthy adults (<i>except pregnant women</i>), pets and livestock.</li> <li>SAFE for other domestic uses, including bathing, washing dishes, laundry or garden irrigation.</li> </ul> | Use bottled water or water from a safe<br>source. Do not boil the water.<br>Supervise children to help them avoid<br>swallowing water while bathing, brushing<br>teeth, etc.<br>Contact your local drinking water specialist<br>for treatment advice. |
| More than 40 ppm<br>(mg/L)      | <b>NOT SAFE</b> for drinking.<br><b>SAFE</b> for other domestic uses, including bathing,<br>washing dishes, laundry or garden irrigation.                                                                                                                                                        | Contact your local drinking water specialist for treatment advice.                                                                                                                                                                                    |

# Interpreting your nitrate results

\*Long-term use poses risk for all. Do not use for infants and women who are pregnant or may become pregnant.

This document can be provided upon request in an alternate format for individuals with disabilities or in a language other than English for people with limited English skills. To request this publication in another format or language, contact the Domestic Well Safety Program at 971-673-0977 or 711 for TTY.





OHA 8342 (6/16)

# Fact Sheet

# **Nitrate in Drinking Water**

#### What is nitrate?

Nitrate is a naturally occurring oxide of nitrogen and is an essential component of all living things. It is the primary source of nitrogen for plants, and it occurs naturally in soil and water. But if the levels of nitrate get too high, it can pose a potential health risk. Sources of excess nitrate in water include fertilizers, septic systems, wastewater treatment effluent, animal wastes, industrial wastes, and food processing wastes. By applying nitrogen fertilizers, burning fossil fuels, and replacing natural vegetation with nitrogen-fixing crops, humans have doubled the rate of nitrogen deposition onto land over the past 50 years.

Nitrate levels can be high in streams and rivers due to runoff of nitrogen fertilizer from agricultural fields and urban lawns. Groundwater is susceptible to contamination from many different chemicals, including nitrate fertilizers, especially where the water table is shallow and there are no confining units to reduce migration downward. Most of these contaminated groundwaters flow into streams and rivers, causing elevated nitrate levels in those water bodies downstream.

Water samples collected from both private and public wells in Oregon over the past twenty years show that nitrate levels in some wells may approach or exceed the historic level considered safe for drinking water. United States Geological Survey studies indicate that about 20% of the wells in agricultural areas of the United States exceed the maximum contaminant level (MCL) set by the United States Environmental Protection Agency (EPA). Oregon has designated three Groundwater Management Areas (GWMAs) because of elevated nitrate concentrations in groundwater. These include the Lower Umatilla Basin GWMA, the Northern Malheur County GWMA, and the Southern Willamette Valley GWMA. Each one has developed a voluntary action plan to reduce nitrate concentrations in groundwater.

High nitrate levels in surface water contribute to algae blooms and may result in elevated levels of disinfection by-products in treated drinking water. Disinfection byproducts have been linked to increased cancer and reproductive health risks in humans as well as liver, kidney and central nervous system problems.

#### How much nitrate is dangerous?

Nitrate levels of up to 3 parts-per-million (ppm) in well water may be naturally-occurring or possibly indicates some low level of contamination, but are considered to be safe for consumption. The EPA has set an MCL of 10 ppm for nitrate (NO3-N) for drinking water. Nitrate levels above 10 ppm may present a serious health concern for infants and pregnant or nursing women. Adults receive more nitrate exposure from food than from water. Infants, however, receive the greatest exposure from drinking water because most of their food is in liquid form. This is especially true for bottle-fed infants whose formula is reconstituted with drinking water with high nitrate concentrations. Nitrate can interfere with the ability of the blood to carry oxygen to vital tissues of the body in infants of six months old or younger. The resulting illness is called methemoglobinemia, or "blue baby syndrome".

Pregnant women may be less able to tolerate nitrate, and nitrate in the milk of nursing mothers may affect infants directly. These persons should not consume water containing more than 10 ppm nitrate directly, added to food products, or beverages (especially in baby formula).

Little is known about the long-term effects of drinking water with elevated nitrate levels. Some research has suggested that nitrate may play a role in spontaneous miscarriages, thyroid disorders, birth defects, and in the development of some cancers in adults. Recent human epidemiologic studies have shown that nitrate ingestion may be linked to colorectal, gastric or bladder cancer. The most likely mechanism for human cancer related to nitrate is the body's formation of N-nitroso compounds (NOC), which have been shown to cause tumors at multiple organ sites in every animal species tested, including neurological system cancers following transplacental exposure. Nitrite, the reduced form of nitrate, reacts in the acidic stomach to form nitrosating agents that then react with certain compounds from protein or other sources such as medications to form NOCs. In humans, it is the nitrosamines and NOCs that are suspected brain and central nervous system carcinogens. Additional epidemiologic and research studies are needed to verify these links and identify any other potential nitrate-related cancer risks. Links to supporting information are provided at the end of this document.



State of Oregon Department of Environmental Quality

Water Quality -Drinking Water Protection 700 NE Multnomah St. Suite 600 Portland, OR 97232 Phone: 503-229-5664 800-452-4011 Fax: 503-229-6037 Contact: Julie Harvey, R.G. http://www.oregon.gov/DE Q/wq/programs/Pages/DW P.aspx

Groundwater Resources:

Seth Sadofsky, R.G. Hydrogcologist Eugene 541-687-7329 <u>sadofsky.seth@deq.state.or.</u> <u>us</u>

Phil Richerson, R.G. Hydrogeologist Pendleton 541-278-4604 richerson.phil@deq.state.or. US

Drinking Water Resources:

Oregon Hcalth Authority Domestic Well Safety Program (DWSP) Phone: 971-673-0440 FAX: 971-673-0979 domestic.wells@state.or.us

Julie Harvey, R.G. DEQ Water Quality Drinking Water Protection (503) 229-5664 <u>harvey.julie@deq.state.or.u</u> S

Tom Pattee, R.G. Oregon Health Authority Drinking Water Program (public water supply wells) (541) 726-2587 x24 tom.pattec@state.or.us

Well Water Resources:

OSU Well Water Program http://wellwater.oregonstate .edu/ One associated human health concern is that water supplies showing nitrate contamination have the potential for other contaminants, such as bacteria and pesticides, to reach groundwater along with the nitrate. In a 2009 report on the quality of water in domestic wells, the U.S. Geological Survey found that contaminants such as nitrate (nutrients) co-occurred with other contaminants in 73 percent of wells tested in the study.

#### What should I do?

- If your well is contaminated by high levels of nitrate (10 ppm or above), infants, pregnant/ nursing women, and other sensitive individuals should stop drinking well water. If you are using infant formula, make sure that it is prepared with bottled water, or use pre-mixed formula.
- Boiling water does not help because it actually concentrates the nitrate. Charcoal filters, water softeners, or use of chlorine do nothing to remove nitrate from water.
- If you choose to treat your water to remove nitrate, use systems with reverse osmosis, distillation, or ion exchange. Remember that these treatment systems require careful maintenance for effective operation.
- If a treatment system is to be used, one with National Sanitation Foundation (NSF) certification should be selected. For additional information on these options, contact the Drinking Water Section of the Oregon Health Authority at (971) 673-0405.
- Monitor your nitrate levels at least once per year (in the spring or summer) and keep records. To protect the health of your family, annual water tests should also be made for bacteria. For more information on laboratories in Oregon that can test your water, contact the Drinking Water Section of the Oregon Health Authority at (971) 673-0405.
- Water containing high nitrate levels can be safely used for bathing, cleaning dishes, washing laundry, or other uses where water is not ingested.
- Identify any potential sources of nitrate on your property and find ways to manage those sources.

Levels of nitrate in your well above 3 ppm indicate that shallow groundwater drawn by your well may be vulnerable to other types of contaminants moving through the soil, including pesticides. Examine your property and the surrounding area for sources of other contaminants. Consider testing for these chemicals if you think your water may be at risk.

#### Where do I look for more information?

For more information on nitrate and groundwater protection, consult these websites or contact the resources listed on the right side of page 1. For general information on groundwater: http://www.oregon.gov/deq/wq/programs/Pages/ GWP.aspx

For information on private wells and well water treatment:

http://www.oregon.gov/oha/PH/HealthyEnviron ments/DrinkingWater/SourceWater/DomesticWe IISafety/Pages/index.aspx

http://wellwater.engr.oregonstate.edu/

https://www.epa.gov/privatewells

http://www.oregon.gov/deq/wq/programs/Pages/ DWP-Private-Well-Owners.aspx

For information on septic systems and groundwater contamination: <u>http://www.epa.gov/safewater/sourcewater/pubs/</u> fs\_swpp\_septic.pdf

For information on drinking water and health effects:

https://www.oregon.gov/oha/ph/healthyenvironm ents/drinkingwater/monitoring/healtheffects/Pag es/nitrate.aspx

For information on Oregon's Groundwater Management Areas: http://www.oregon.gov/deq/wq/programs/Pages/ GWP-Management-Areas.aspx

http://wellwater.oregonstate.edu/swvgwma

For information on state and federal efforts to evaluate nutrient pollution: https://www.epa.gov/nutrientpollution

For information on cancer-related research: http://deainfo.nci.nih.gov/advisory/pcp/annualre ports/pcp08-09rpt/PCP\_Report\_08-09\_508.pdf

For information on national USGS research on nutrients:

http://water.usgs.gov/nawqa/nutrients/

#### Alternative Formats

DEQ can provide documents in an alternate format or in a language other than English upon request. Call DEQ at 800-452-4011 or email deqinfo@deq.state.or.us. Lower Yakima Valley Groundwater Management Program

# Volume I



Primary Author: James H. Davenport, Attorney at Law, on behalf of, and with assistance of Yakima County Department of Public Services

Thank you in particular to Vern Redifer, Lisa Freund, Chris Saunders, Phil Rosenkranz, Bobbie Brady, Patty LeBlanc, Michael Martian, and Cynthia Kozma

This program was approved by the GWAC on XXX.

| Name               | Affiliation                                             |
|--------------------|---------------------------------------------------------|
| Rand Elliott       | Yakima County Board of Commissioners                    |
| Vern Redifer       | Yakima County Public Services                           |
| Elizabeth Sanchey  | Yakama Nation                                           |
| Stuart Crane       | Yakama Nation                                           |
| Steve George       | Yakima County Farm Bureau                               |
| Frank Lyall        | Yakima County Farm Bureau                               |
| Jason Sheehan      | Yakima Dairy Federation                                 |
| Dan DeGroot        | Yakima Dairy Federation                                 |
| Stuart Turner      | Agronomist, Turner and Co.                              |
| Chelsea Durfey     | Agronomist, Turner and Co.                              |
| Jean Mendoza       | Friends of Toppenish Creek                              |
| Eric Anderson      | Friends of Toppenish Creek                              |
| Jan Whitefoot      | Concerned Citizens of the Yakama Reservation            |
| Jim Dyjak          | Concerned Citizens of the Yakama Reservation            |
| Laurie Crowe       | South Yakima Conservation District                      |
| Rodney Heit        | South Yakima Conservation District                      |
| John Van Wingerden | Port of Sunnyside                                       |
| Gary Bahr          | WA Department of Agriculture                            |
| Perry Beale        | WA Department of Agriculture                            |
| Andy Cervantes     | WA Department of Health                                 |
| Sheryl Howe        | WA Department of Health                                 |
| David Bowen        | WA Department of Ecology                                |
| Sage Park          | WA Department of Ecology                                |
| Lucy Edmondson     | U.S. EPA                                                |
| Nick Peak          | U.S. EPA                                                |
| Holly Myers        | Yakima Health District                                  |
| Ryan Ibach         | Yakima Health District                                  |
| Dr. Troy Peters    | WSU Irrigated Agriculture Research and Extension Center |
| Ron Cowin          | Roza-Sunnyside Joint Board of Control                   |
| Lino Guerra        | Hispanic Community Representative                       |
| Rick Perez         | Hispanic Community Representative                       |
| Doug Simpson       | Irrigated Crop Producer                                 |
| Bud Rogers         | Lower Valley Representative Pos. 1                      |
| Kathleen Rogers    | Lower Valley Representative Pos. 1                      |
| Patricia Newhouse  | Lower Valley Representative Pos. 2                      |
| Sue Wedam          | Lower Valley Representative Pos. 2                      |
| Dr. Jessica Black  | Heritage University                                     |
| Dr. Alex Alexiades | Heritage University                                     |
| Matt Bachmann      | USGS Washington Water Science Center                    |

# Groundwater Advisory Committee

| No Longer Participating: |                                                          |
|--------------------------|----------------------------------------------------------|
| Name                     | Affiliation                                              |
| Helen Reddout            | Community Association for Restoration of the Environment |
| Wendell Hannigan         | Community Association for Restoration of the Environment |
| Bruce Perkins            | Benton-Franklin Health District                          |
| Mark Nielson             | Benton Conservation District                             |
| Heather Wendt            | Benton Conservation District                             |
| Jaclyn Ford              | WA Department of Agriculture                             |
| Tom Ring                 | Yakama Nation                                            |
| Ginny Prest              | WA Department of Agriculture                             |
| Charlie McKinney         | Department of Ecology                                    |
| Tom Tebb                 | Department of Ecology                                    |
| Robert Farrell           | Port of Sunnyside                                        |
| Lonna Frans              | USGS Washington Water Science Center                     |
| Robert Morales           | Lower Valley Community Representative                    |
| Ramon Tobias             | Hispanic Community Representative                        |
| Margarita Tobias         | Hispanic Community Representative                        |
| Don Young                | Yakima County Farm Bureau                                |
| Justin Waddington        | Yakima County Farm Bureau                                |
| Dr. Kefy Desta           | WSU Irrigated Agriculture Research and Extension Center  |
| Ginny Stern              | WA Department of Health                                  |
| Gordon Kelly             | Yakima Health District                                   |
| David Cole               | Yakima Health District                                   |
| Tom Eaton                | U.S. EPA                                                 |
| Marie Jennings           | U.S. EPA                                                 |
| Bill Dunbar              | U.S. EPA                                                 |
| Jim Newhouse             | South Yakima Conservation District                       |
| Jim Trull                | Sunnyside Valley Irrigation District                     |

No Longer Participating:

# Table of Contents

# Contents – Volume I

| EXECUTIVE SUMMARY                                        | VIII |
|----------------------------------------------------------|------|
| Funding                                                  | ix   |
| Program Content                                          | ix   |
| Workgroups                                               |      |
| Initiatives Completed by the GWAC                        |      |
| Alternative Management Strategies                        | X    |
| Recommendations                                          | X    |
| Implementation                                           |      |
| Table of Figures                                         |      |
| Table of Tables                                          | xiii |
|                                                          | 1    |
| The Problem                                              |      |
| The Response                                             |      |
| At-Risk Populations and Public Education                 |      |
| Meetings                                                 | 3    |
| Organization of the GWMA Program                         | 4    |
| Boundary of the Groundwater Management Area              |      |
| Jurisdictional Boundaries: Federal, State, Local, Tribal | 7    |
| CHARACTERIZATION OF THE AREA                             | 9    |
| The Yakima River Basin                                   | 9    |
| Geology                                                  |      |
| Hydrogeology                                             |      |
| Mean Annual Groundwater Recharge                         |      |
| Groundwater Levels and Flow                              | 25   |
| Topography                                               |      |
| Depth to Groundwater                                     |      |
| Soil Types                                               | 34   |
| Climate                                                  | 39   |
| Land Use                                                 | 41   |
| Crops                                                    | 43   |
| Fertilizers                                              | 53   |
| Water Use                                                | 56   |
| Irrigation Methods                                       | 59   |
| Demographics                                             | 61   |
| Population                                               |      |
| Income and Poverty                                       | 62   |
| Education                                                | 62   |
| Households and Families                                  | 62   |
| Race and Ethnicity                                       | 63   |
| Language                                                 | 63   |
| SOURCES OF NITRATE                                       | 64   |
| Irrigated Agriculture                                    | 64   |
| Crops Supporting Livestock Operations                    |      |
| Tree Fruit and Vegetable Crops                           | 65   |
| Fertilizers                                              | 65   |
| Organic Fertilizers: Cover Crops, Manure and Compost     |      |
| Synthetic Fertilizers                                    | 67   |
| Water Applications                                       |      |
| Livestock Operations/CAFOs                               | 68   |
| Dairy Operations                                         | 68   |

| Waste Storage Facilities (Lagoons)                                       | 69              |
|--------------------------------------------------------------------------|-----------------|
| Animal Holding Areas or Corrals                                          | 70              |
| Pens and Composting Areas                                                | 70              |
| Buildings Housing Animals                                                | 71              |
| Residential, Commercial, Industrial and Municipal Groundwater            | 71              |
| Residential Onsite Sewage Systems (ROSS)                                 | 71              |
| Large Onsite Sewer Systems (LOSS)                                        | 73              |
| Commercial Onsite Sewer Systems (COSS)                                   | 73              |
|                                                                          |                 |
| Biosolids<br>Residential Lawn Fertilizers                                | 76              |
| "Hobby Farms"                                                            | 76              |
| Underground Injection Wells                                              |                 |
| Atmospheric Deposition                                                   | 78              |
| THE REGULATORY ENVIRONMENT                                               | 79              |
| Safe Drinking Water Act                                                  |                 |
| State Department of Health                                               | 80              |
| Clean Water Act                                                          |                 |
| Washington's Water Pollution Control Act and Water Resources Act         |                 |
| Resource Conservation and Recovery Act                                   |                 |
| Washington's Right to Farm Law                                           |                 |
| Interagency Cooperation                                                  |                 |
| Regulations Pertaining to Particular Sources                             |                 |
| Crops Supporting Livestock Operations                                    |                 |
| Tree Fruit and Vegetable Crops                                           |                 |
| Fertilizers                                                              |                 |
| Livestock Operations                                                     |                 |
| Concentrated Animal Feeding Operations                                   |                 |
| Waste Storage Facilities (Lagoons)                                       |                 |
| Pens and Composting Areas                                                |                 |
| Water Applications                                                       |                 |
| Residential Onsite Sewage Systems (ROSS)                                 | 90<br><b>96</b> |
| Large Onsite Sewer Systems (LOSS)                                        | 98              |
| Biosolids                                                                |                 |
| Residential Lawn Fertilizers                                             |                 |
| "Hobby Farms"                                                            |                 |
| Underground Injection Wells                                              |                 |
| Abandoned Wells                                                          |                 |
|                                                                          |                 |
| ENVIRONMENTAL EFFECTS                                                    | 101             |
| Nitrate                                                                  | 101             |
| The Nitrogen Cycle                                                       | 101             |
| Nitrate Leaching                                                         | 102             |
| Health Effects to People                                                 |                 |
| Yakima River Surface Water Quality                                       |                 |
| WATER QUANTITY AND QUALITY GOALS AND OBJECTIVES                          | 106             |
| GWAC INITIATIVES                                                         | 109             |
| Interim Education and Outreach                                           | 109             |
| 2011 Nitrate Treatment Pilot Program                                     |                 |
| GWMA Program Development, Early Products                                 |                 |
| GWMA Website                                                             | 115             |
| Best Management Practices                                                |                 |
| Groundwater Monitoring Plan                                              |                 |
| USGS Drinking Water Quality Testing                                      |                 |
| Deep Soil Sampling Program                                               | 120             |
| Identification and Ranking of Sources of Elevated Nitrate in Groundwater | 120             |
| Development of Specific Characteristics of "Hot Spots"                   |                 |
| Nitrogen Loading Assessment                                              | 121             |
|                                                                          |                 |

| Mean Annual Groundwater Recharge Model                                  | 128  |
|-------------------------------------------------------------------------|------|
| Geographic Information System Study                                     | 128  |
| DESCRIPTION OF ALTERNATIVE ACTIONS TO ADDRESS THE PROBLEM               | 137  |
| DISCUSSION OF PROS AND CONS OF ALTERNATIVE ACTIONS                      | 138  |
| Environmental Justice                                                   | 138  |
| RECOMMENDED ACTIONS                                                     | _140 |
| Administration                                                          | 140  |
| Public Health and Safety                                                | 140  |
| Residential, Commercial, Industrial, and Municipal                      | 141  |
| Irrigated Agriculture                                                   | 142  |
| Livestock/CAFO                                                          | 144  |
| Recommendations for Irrigated Agriculture and Livestock CAFO Together   | 146  |
| Data Collections, Characterization, Monitoring                          | 148  |
| Regulatory Framework                                                    | 152  |
| Draft Recommendations Obtaining a Total Value of Zero or Less           | 154  |
| IMPLEMENTATION WORK PLANS                                               | 156  |
| Parties Responsible for Implementation of the Recommended Actions       | 156  |
| Yakima County as "Lead Agency"                                          | 156  |
| Schedule For Implementation Of The Recommended Actions                  |      |
| Monitoring System For Evaluation Of Effectiveness Of Recommended Action | 157  |

# **Executive Summary**

The Lower Yakima Valley Groundwater Management Area (GWMA) was formed in 2012 to address the stated goal of reducing nitrate concentrations. Evaluations of historic data determined that 12% of the drinking water wells tested in the Lower Yakima Valley contained elevated nitrate concentrations exceeding the drinking water standard of 10 mg/L. (PGG 2011) A recent groundwater study in the Lower Yakima Valley, which sampled over 150 private domestic wells in 2017, found that 26 percent of the wells had at least one of its six samples exceeding the drinking water standard. Nitrate was not detected in 13 percent of the wells sampled (USGS 2017) Nitrate impacts to groundwater are common in agricultural areas (Harter 2009). While many sources contribute to nitrates in groundwater, data from these wells indicate water has been affected by activities at the land surface.

In response, Yakima County established the Lower Yakima Valley Groundwater Management Area (LYVGWMA), and formed the Groundwater Advisory Committee (GWAC) in 2012. The goal of the GWAC was to develop a Program to recommend approaches to reduce nitrate levels in groundwater and meet state drinking water standards. This document is that Program, the report of the GWAC's completed work.

The GWAC was a large and diverse committee and included representatives from all identified groups affected by the state of groundwater, including: local, state and federal government agencies, farmers, local citizens, dairy producers, agronomists, irrigation districts, conservation district, environmental groups, and other vested parties. This committee, and its workgroups met monthly over the past six years.

The diversity of the committee members' interests often made for contentious discussions, but the members were committed to resolving the issues and continued to participate, and were usually respectful. This high level of commitment is demonstrated by the tremendous amount of work that was produced and the fact that the group was able to reach consensus on many issues.

#### Funding

Funding to support the development and planning stage of the Lower Yakima Valley GWMA was appropriated by the Washington State Legislature primarily through the efforts of Senator James Honeyford, of Sunnyside.

#### Program Content

This document focuses on the following elements: 1) a description of the issue, 2) the establishment of the Lower Yakima Valley Groundwater Management Area, 3) the goals and objectives for addressing elevated nitrate in groundwater, 4) characterization of the area, 5) sources of nitrate, 6) the regulatory environment, 7) environmental and health effects of nitrate, 8) an extensive list of all the work that has been conducted by the GWMA, and 9) a list of recommendations and alternative actions to reduce nitrate concentrations in groundwater during the implementation phase.

#### Workgroups

Several workgroups were established to discuss and resolve specific issues. These workgroups focused on 1) Education and Outreach; 2) Residential, Commercial, Industrial, and Municipal; 3) Irrigated Agriculture; 4) Livestock and CAFO; 5) Regulatory Framework; and 6) Data Analysis workgroup. These workgroups were highly functioning, typically meeting monthly, and were responsible for reporting to the Groundwater Management Advisory Committee (GWAC) on their work.

#### Initiatives Completed by the GWAC

The following initiatives were completed by the GWAC:

- Free well water testing
- Point of use treatment systems for wells with elevated nitrate concentrations
- Education and outreach
- Fact sheets produced in English and Spanish
- Billboards
- Deep soil sampling
- Drinking water sampling program

- Initial locations for 30 monitoring wells for the ambient groundwater monitoring program
- Nitrogen Availability Assessment
- Documents created by PGG (listed in Appendix F)
- Best Management Practices as defined by Irrigated Agriculture and Livestock/CAFO Workgroups
- Development of a GIS (geographic information system) database where all data is consolidated.
- GIS tool that combines surface and subsurface physical conditions, nitrogen sources and land use within the LYVGWMA.

# Alternative Management Strategies

Through the workgroups and other contracted work, The GWAC identified a list of over 250 potential alternative management strategies that could reduce nitrate concentrations in groundwater. The GWAC discussed each strategy and reached consensus on a set of 66 strategies, in the following categories:

- Administration
- Public Health and Safety
- Residential, Commercial, Industrial, and Municipal
- Irrigated Agriculture
- Livestock/CAFO
- Data Collection, Characterization, and Monitoring
- Regulatory Framework

# Recommendations

Considering the factors listed in WAC 173-100-100 (4), the GWAC members placed weighted values on each strategy. These values were totaled to determine the total support of the GWAC for each strategy. The final recommended actions are set forth in this Program.

# Implementation

The next phase of the GWMA is implementation. At one of its final meetings, the GWAC recommended, (by a vote of 14-1, 1 abstention, 1 not voting,) that Yakima County act as lead agency in future Lower Yakima Valley groundwater management programs,

recognizing that the County's activity as lead agency would be subject to available funding from the State of Washington.

The body of work which the GWAC completed in the Assessment and Planning phase provides the foundation for this next phase, which is the Implementation Phase. This document, the work it represents, and its program recommendations, will facilitate implementing practices in order to meet the goal of reducing nitrate concentrations in groundwater.

# Table of Figures

| FIGURE 1 - GWMA BOUNDARY                                                   | 5    |
|----------------------------------------------------------------------------|------|
| FIGURE 2 - AREAS OF PRELIMINARY ASSESSMENT                                 | 6    |
| FIGURE 3 - YAKAMA INDIAN RESERVATION                                       | 7    |
| FIGURE 4 - JURISDICTIONAL BOUNDARIES AND PUBLIC OWNERSHIP                  | 8    |
| FIGURE 5 – GEOLOGY                                                         | 15   |
| FIGURE 6 – SURFICIAL HYDROGEOLOGIC UNITS                                   | 18   |
| FIGURE 7 - SPRINGS WITHIN THE TOPPENISH BASIN                              | 21   |
| FIGURE 8 – MEAN ANNUAL RECHARGE WITHIN THE LYVGWMA                         | 22   |
| FIGURE 9 - GROUNDWATER LEVEL CONTOURS ESTABLISHED BY USGS WITHIN THE       |      |
| LYVGWMA                                                                    | 27   |
| FIGURE 10 - GROUND SURFACE CONTOURS (TOPOGRAPHY) WITHIN THE LYVGWMA        | 29   |
| FIGURE 11 - CALCULATED DEPTH TO GROUNDWATER WITHIN THE LYVGWMA             | 31   |
| FIGURE 12 - DIRECTION OF GROUNDWATER FLOW WITHIN THE LYVGWMA               | 33   |
| FIGURE 13 - SOIL TYPES                                                     | 35   |
| FIGURE 14 - SOIL TYPES IN LYVGWMA SIMPLIFIED IN HYDRAULIC CONDUCTIVITY GRO | OUPS |
|                                                                            | 38   |
| FIGURE 15 - LOCATIONS OF CROPS GROWN WITHIN THE LYVGWMA (2015)             | 51   |
| FIGURE 16 - YAKIMA COUNTY ZONING WITHIN LYVGWMA                            | 55   |
| FIGURE 17 - SUNNYSIDE VALLEY AND ROZA IRRIGATION DISTRICTS WITHIN THE      |      |
| LYVGWMA                                                                    | 58   |
| FIGURE 18 - BIOSOLIDS APPLICATION SITES                                    | 75   |
| FIGURE 19 - NITRATE PILOT PROJECT WATER TEST LOCATIONS                     | 111  |
| FIGURE 20 - HIGH RISK WELL ASSESSMENT TEST LOCATIONS                       | 114  |
| FIGURE 21 - USGS 2017 GROUNDWATER WELL TEST LOCATIONS                      | 118  |
| FIGURE 22 - ALL WATER QUALITY SAMPLING LOCATIONS (3 TESTING PROGRAMS)      | 119  |
| FIGURE 23 - PERCENT OF TOTAL N AVAILABLE BY SOURCE (WSDA)                  | 123  |
| FIGURE 24 - NITROGEN AVAILABLE BY SPECIFIC SOURCE                          |      |
| FIGURE 25 - NITROGEN AVAILABLE BY INDUSTRY                                 | 127  |
| FIGURE 26 - TOTAL NITROGEN AVAILABILITY                                    | 129  |
| FIGURE 27 - NITROGEN AVAILABILITY AND USGS WELLS                           | 130  |
| FIGURE 28 - USGS WELL DATA OVERLAID ON SOIL TYPES SIMPLIFIED BY HYDRAULIC  |      |
| CONDUCTIVITY GROUPS                                                        | 131  |
| FIGURE 29 - USGS WELL DATA OVERLAID ON IRRIGATION CANAL AND DRAIN          |      |
| INFORMATION                                                                | 132  |
| FIGURE 30 - USGS WELL DATA OVERLAID ON CROPPING PATTERNS                   | 133  |
| FIGURE 31 - USGS WELL DATA OVERLAID ON MAP OF POINT SOURCES                | 134  |
| FIGURE 32 - USGS WELL DATA OVERLAID ON MAP OF SEPTIC SYSTEMS               | 135  |

# Table of Tables

| TABLE 1 – HYDROGEOLOGY WITHIN THE ELLENSBURG AND OTHER SEDIMENTARY UNITS |        |  |  |  |
|--------------------------------------------------------------------------|--------|--|--|--|
|                                                                          | 17     |  |  |  |
| TABLE 2 - PRIMARY SOIL TYPES HYDRAULIC CONDUCTIVITY (K)                  |        |  |  |  |
| TABLE 3 - LIST OF ALL SOIL TYPES WITHING THE LYVGWMA                     |        |  |  |  |
| TABLE 4 – CLIMATE (WRCC)                                                 |        |  |  |  |
| TABLE 5 - AGRICULTURAL CENSUS DATA - GENERAL CROP TYPES                  |        |  |  |  |
| TABLE 6 - AGRICULTURAL CENSUS DATA - FIELD CROPS                         |        |  |  |  |
| TABLE 7 - AGRICULTURAL CENSUS - LIVESTOCK                                |        |  |  |  |
| TABLE 8 - WSDA 2015 CROP INVENTORY WITHIN LYVGWMA                        |        |  |  |  |
| TABLE 9 - PERCENTAGE DISTRIBUTION OF COMMERCIAL, MANURE, AND COMPOS      | Т      |  |  |  |
| FERTILIZER (WSDA 2018)                                                   | 54     |  |  |  |
| TABLE 10 - (WAC 246-272A-0320) MINIMUM LAND AREA REQUIREMENT SINGLE FAM  | ILY    |  |  |  |
| RESIDENCE OR UNIT VOLUME OF SEWAGE                                       | 97     |  |  |  |
| TABLE 11 - (WAC 246-272A-220)                                            |        |  |  |  |
| TABLE 12 - AVAILABLE N OF IRRIGATED AGRICULTURE                          | 122    |  |  |  |
| TABLE 13 – AVAILABLE N OF CAFO / DAIRY, ON-SITE SEPTIC/SEWAGE, RCIM WAST | E, AND |  |  |  |
| ATMOSPHERIC DEPOSITION                                                   | 122    |  |  |  |
| TABLE 14 - TOTAL AVAILABLE N FROM ALL SOURCES STUDIED IN WSDA 2018       | 124    |  |  |  |
| TABLE 15 - TOTAL ACREAGE FOR N AVAILABILITY COMPUTATIONS                 | 124    |  |  |  |
| TABLE 16 - NITROGEN AVAILABILITY ASSEMBLED BY INDUSTRY GROUP             |        |  |  |  |
| TABLE 17 - INDUSTRY GROUP TOTAL N AVAILABILITY                           |        |  |  |  |

# Introduction

# The Problem

Groundwater in the Lower Yakima Valley has elevated nitrate concentrations. A number of groundwater studies have documented nitrate concentrations in excess of the Safe Drinking Water Act Maximum Contaminant Level of 10 mg/L. Between 1988 and 2008, 12 percent of wells tested in the area had nitrate concentrations above that level. Another 21 percent of wells tested were below this level but higher than 5 mg/L (reported in Ecology et al., 2010).<sup>1</sup>

These numbers raised concerns due to the potential impact to human health (Ecology et al., 2010). Nitrate is considered an acute contaminant and may cause serious health conditions in vulnerable populations. If the condition is left untreated in newborns, death is possible. In the Lower Yakima Valley, residents may be exposed to nitrate if they obtain their drinking water through a private or shared well—the typical source of drinking water for the 6100+ rural households not served by a public water system. Assuming 12 percent of private wells exceed the Safe Drinking Water Act Maximum Contaminant Level, up to 720 of those households would be exposed to nitrate-contaminated groundwater.

## The Response

Grass roots organizations such as Community Association for Restoration of the Environment (CARE) and Concerned Citizens for the Yakima Reservation (CCYR) identified the problem in 1997. Articles entitled "Hidden Wells, Dirty Water" ran in the *Yakima Herald Republic* in 2008, detailing nitrate issues affecting public and private wells. The articles suggested that a lack of coordination between local, state, and federal agencies aggravated the problem. The county permits land use, Department of Agriculture permits most dairies and agricultural activities, and under authority delegated by EPA, the

<sup>&</sup>lt;sup>1</sup>Further problem definition is contained in this Program below in the sections characterizing the GWMA, describing the land uses traditionally and currently conducted within the GWMA, and the data and observations made possible by the investigation and analysis conducted by the GWAC.

Department of Ecology oversees water quality programs and the permitting of some dairies. The EPA, along with other state and local agencies, responded by facilitating public meetings in December 2008, February and October 2009, and June 2010. In November 2009, the Yakima Valley was designated as an EPA Environmental Justice Community.

In January 2010, EPA issued a finding in support of the use of SDWA Section 1431 of the Safe Drinking Water Act to address the contamination. EPA found that groundwater in the Yakima Valley is an underground source of drinking water which is contaminated, and that this contamination may present an imminent and substantial endangerment to human health. Sampling was conducted by EPA in February and April 2010, under the authority of SDWA Section 1431.

The Washington State Department of Ecology along with four other county, state, and federal agencies published a report (Ecology, February 2010) titled Lower Yakima Valley Groundwater Quality Preliminary Assessment and Recommendations Document. The report summarized the nitrate and coliform issue in the Lower Yakima Valley and was based on earlier technical reports and technical data obtained by the Washington State Departments of Ecology, Agriculture, and Health, the Yakima County Public Works Department, and the U.S. Environmental Protection Agency. The report identified a number of regulatory options for addressing the elevated nitrate concentrations including establishment of a Groundwater Management Area (GWMA), Special Protection Area, Aquifer Protection Area, Sole Source Aquifer, Watershed Management Plan, and Total Daily Maximum Load (TDML). Of these options, the Yakima County Commissioners selected to establish a GWMA and signed an interagency agreement with Ecology in September 2010.

The Lower Yakima Valley Groundwater Management Area (LYVGWMA) and Groundwater Advisory Committee (GWAC) were established in 2012. The goal of the GWAC was to develop a GWMA Program to recommend approaches to reduce nitrate levels in groundwater to below state standards. Its membership reflected the coordinative nature of the effort. Citizen and agricultural industry representatives were appointed to bring knowledge of potential sources and concern about public acceptance of the committee's work. Representatives from Ecology, Washington State Department of Agriculture (WSDA), Washington State Department of Health (DOH), the US Environmental Protection Agency (EPA), the Yakama Nation, the Yakima Health District, and Yakima County were appointed to the GWAC so as to gather all of the relevant regulatory aspects pertinent to the problem.

The GWAC tasked itself with identifying the primary sources of nitrate contamination using scientific data, and identifying or developing practices that would minimize nitrate concentration of groundwater. To accomplish its tasks, it developed a plan that would recommend strategies for implementing improved practices and providing appropriate education and outreach on health risks and how to prevent exposure (GWAC talking points, approved February 2013).

Its objectives included problem identification, data collection, monitoring and analysis; potential measures or practices for reducing groundwater contamination, and public education and outreach (GWAC talking points, approved February 2013).

# At-Risk Populations and Public Education

As the GWAC began its work, it immediately initiated an education and outreach program to reach out to at-risk populations and their families served by private or shared wells in the LYVGWMA. Infants, pregnant women, women who may become pregnant, and individuals with certain blood disorders are all considered at high risk from exposure to elevated or high levels of nitrate. Accordingly, an outreach program was implemented to inform these populations and their families of the health risks of high nitrate, how to protect themselves, and how to protect the groundwater that their drinking water wells draw from. Yakima County distributed water quality testing strips and water filtration systems, with the support of the Department of Health and Environmental Protection Agency. As Spanish is the primary language spoken in an estimated 60 percent of LYV GWMA households, a bilingual (Spanish/English) outreach program was implemented and ran concurrently with the GWMA Program development.

## Meetings

The GWAC held its first meeting on June 5, 2012. Over the next six years it would meet more than 50 times to accomplish the work it identified. The GWAC initially also included representatives from Benton County. However, Benton County and the Benton County Conservation District withdrew from the LYVGWMA because they decided that it

would provide their geographical area with a better approach if they took on the issue of nitrogen reduction in groundwater on their own. The makeup of the GWAC's membership adjusted over time, as people moved between professional and personal opportunities. The governmental entities and community interests represented remained the same throughout, although their personnel changed. Its subcommittees, or working groups, were tasked with the research, investigation and proposed recommendations within their area of expertise – Data Collection, Livestock/CAFO, Irrigated Agriculture, Residential, Commercial, Industrial and Municipal (RCIM), Regulatory Framework, Education and Public Outreach, and Funding. Working groups then brought their recommendations back to the GWAC for its consideration. The working groups would collectively hold over 200 meetings in the ensuing years.

## Organization of the GWMA Program

The suggested content of a GWMA Program is defined by Chapter 173-100 WAC. The Program laid out in the following pages generally follows this structure. The Area Characterization describes the physical characteristics of the Lower Yakima Valley, the historic process by which it has been transformed from a semi-arid desert into an agricultural oasis, and how the land is used today. A section on demographics looks at who lives here and why. Ensuing chapters identify the GWAC's water quality goals and objectives, explore the sources of nitrogen and regulatory environment, and describe Yakima County's role in groundwater quality protection. The narrative then turns to the heart of the GWAC's work: its investigation and analysis of the sources of nitrate, the pros and cons of various recommendations, and finally, defining recommended actions at a variety of levels: legislative, state agencies, local government, and private individuals.

# Boundary of the Groundwater Management Area

The Lower Yakima Valley Groundwater Management Area (LYVGWMA) is located within the Lower Yakima Valley, south of Union Gap, northeast of the Yakima River and west of the Yakima-Benton County line. Its total area is 175,161 acres. It lies in the southeastern portion of the Lower Yakima Valley north of Yakima River from Union Gap to the Benton County line, except for the southeastern end that extends south of the River onto the lower slopes of Toppenish Ridge. The Northern boundary generally lies on the southern slopes of Ahtanum Ridge several miles southwest of the Cold Creek Syncline.

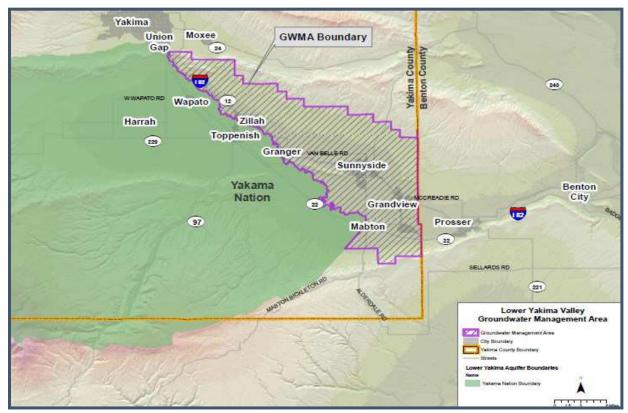



FIGURE 1 - GWMA BOUNDARY

The Groundwater Management Area addressed in this Program is essentially the same as the Western and Eastern Study Areas as identified within the 2010 *Preliminary Assessment*.<sup>2</sup> It includes the non-reservation lands along the northeastern side of the Yakima

<sup>&</sup>lt;sup>2</sup> Lower Yakima Valley Groundwater Quality, Preliminary Assessment and Recommendations Document, Washington State Department of Agriculture, Washington State Department of Ecology, Washington State Department of Health, Yakima County Department of Public Works, U.S. Environmental Protection

River south of Union Gap and the southeast Yakima Valley downstream of the confluence of Satus Creek and the Yakima River. Approximately 60 percent of the valley population resides in this area. The Groundwater Management Area includes the incorporated communities of Zillah, Sunnyside, Granger, Grandview, and Mabton and the rural settlements of Buena and Outlook.

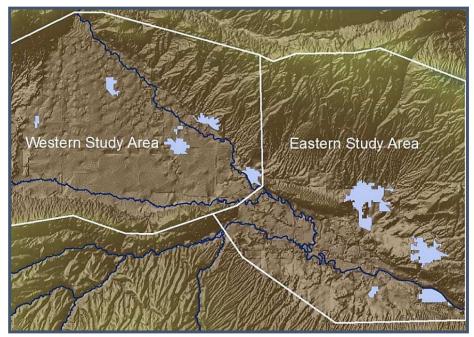
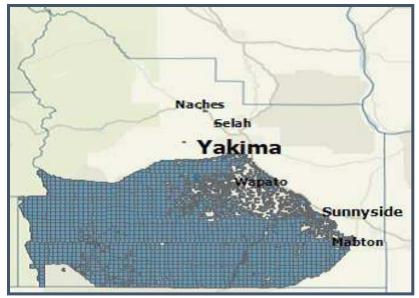


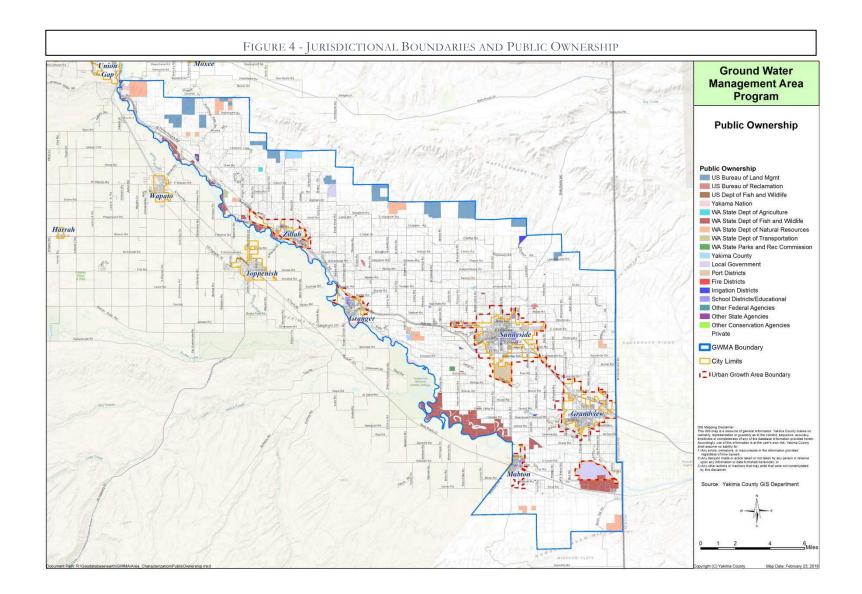

FIGURE 2 - AREAS OF PRELIMINARY ASSESSMENT

The *Preliminary Assessment* subdivided the study area in order to reflect geographic, geological, and geopolitical constraints; and corresponded to divisions reflected in the historical water quality data set.<sup>3</sup>

Agency, Ecology Publication No. 10-10-009, February 2010. (See Appendix A. for Administrative Background.)

<sup>&</sup>lt;sup>3</sup> These two subareas roughly mirror the areas designated as upper and lower study areas in the 2002 Valley Institute for Research and Education groundwater study, and correspond to the Toppenish and Benton basins referenced in other studies. Both areas cover approximately 368,600 acres within Yakima County.





FIGURE 3 - YAKAMA INDIAN RESERVATION

The Yakama Nation<sup>4</sup> elected not to participate in the deliberation of the Lower Yakima Valley Groundwater Advisory Committee, choosing to address nitrate levels independently, under the oversight of the Environmental Protection Agency.

# Jurisdictional Boundaries: Federal, State, Local, Tribal

All the land within the GWMA is within the jurisdiction of Yakima County, with the exception of land within the municipalities of Zillah, Granger, Sunnyside, Grandview, and Mabton. While properties owned by the United States exist within the GWMA, they do not present relevant issue areas that relate to the nitrate problem addressed by this Program.

<sup>&</sup>lt;sup>4</sup> Confederated Tribes and Bands of the Yakama Nation (Yakama Nation). The Yakama Indian Reservation lies along the southwest side of the Yakima River and extends beyond Yakima County boundaries into the northern edge of Klickitat County and Southeastern corner of Lewis County. It covers an area of approximately 1.3 million acres. The Yakama Nation has nearly 9,000 enrolled members from 14 bands and tribes.



 $\infty$ 

# Characterization of the Area

The following discussion describes the area as it currently exists. The information relates in some instances to Yakima County generally and in others to the LYVGWMA in particular. Caution should be exercised to notice the particular area under discussion as various information is presented. Investigations and analysis pursued during the process of the LYVGWMA are presented in a later section of this Program.

## The Yakima River Basin

The Yakima River Basin is located in south-central Washington and includes three Washington State Water Resource Inventory Areas (WRIA—numbers 37, 38, and 39), part of the Yakama Nation lands, three eco-regions (Cascades, Eastern Cascades, and Columbia Basin), and touches parts of four counties: Klickitat, Kittitas, Yakima, and Benton (USGS 2006). Almost all of Yakima County and more than 80 percent of Kittitas County lie within the basin. About 50 percent of Benton County is in the basin. Less than one percent of the basin lies in Klickitat County, principally in an unpopulated upland area. Within the Yakima Basin, there are six structural sedimentary basins. The delineated sedimentary basins are from north to south, the Roslyn, Kittitas, Selah-Wenas, Yakima (Ahtanum-Moxee), Toppenish, and Benton Sedimentary Basins. All are clearly defined by the geologic structure in the Yakima River Basin. The LYVGWMA includes only parts of the Toppenish and Benton Sedimentary Basins.

The Toppenish Sedimentary Basin is fully contained within Yakima County. It is bordered on the north by the Ahtanum Ridge, on the south by the Toppenish Ridge, and bisected by the Wapato Syncline. The eastern boundary of this basin abuts the Benton Sedimentary Basin. Only the southeastern corner of the Toppenish Sedimentary Basin, northeast of the Yakima River, is included in the LYVGWMA boundaries.

The Benton Sedimentary Basin is bordered on the south by the Horse Heaven Hills structure. The northeast boundary generally follows the northern flank of the Cold Creek Syncline. The western boundary abuts the eastern boundary of the Toppenish Sedimentary Basin and a small section of the Yakima Sedimentary Basin. Only the western portion of the Benton Sedimentary Basin, approximately a third, is in the LYVGWMA boundaries.

### Geology

#### Stratrigraphy

#### <u>Basalt</u>

The Columbia River Basalt Group (CRBG) is a thick sequence of Miocene eruptive basalts, variously estimated several thousand feet thick, interbedded with a few minor sedimentary strata. It overlays the basalt rock unit, or bedrock, of the Yakima region. The total CRBG covers an area of more than 59,000 square miles (Tolan et al. 1989) and spanning parts of Washington, Oregon, and Idaho. It is subdivided into three primary units, or formations, designated the Saddle Mountains Basalt, the Wanapum Basalt, and the Grande Ronde Basalt (USGS 2009a, GSI 2009a, 2011d). The Saddle Mountains Basalt is often exposed at the surface. Its thicknesses ranges from 180 to 800 feet and averages more than 500 feet in the Yakima Basin. The Wanapum Basalt can be over 800 feet thick. The Grande Ronde Basalt underlies the Wanapum Basalt. These formations are further subdivided into several dozen members and hundreds of flows.

The uppermost basalt, the Saddle Mountains Basalt, is often visible at the bounding upland ridges of the Toppenish Basin such as the Rattlesnake Mountains, Ahtanum Ridge, Toppenish Ridge, and Horse Heaven Hills. It is made up of the Umatilla Member flows, the Wilbur Creek Member flows, the Asotin Member flows (13 million years ago), the Weissenfels Ridge Member flows, the Esquatzel Member flows, the Elephant Mountain Member flows (10.5 million years ago), the Bujford Member flows, the Ice Harbor Member flows (8.5 million years ago) and the Lower Monumental Member flows (6 million years ago). The underlying Wanapum Unit averages 600 feet thick. These units are separated by the Mabton Interbed, with an average thickness of 70 feet (EPA 2012).

Basalt is a dense rock, having a fine texture precluding identification of crystals without magnification. Basalt is resistant to erosion and weathering, and is a notable cliff-forming rock. Fresh, unweathered surfaces are black or dark gray; weathered surfaces range in color from gray to reddish brown. Basalt consists principally of small crystals of calcic labradorite, pyroxene, and olivine in a dense matrix of sodic labradorite, augite, and volcanic

glass. Magnetite and apatite are common accessory minerals. Calcite, siderite, zeolites, opal, and chalcedony are common in veins and vesicles in the basalt (USGS 1962).

At the end of the Miocene Epoch, approximately 5.3 million years ago, an extended plain of basaltic lava covered most of eastern Washington (USGS 1962; USGS 2009a). The basaltic lava flows were extruded from fissures located in the eastern part of the Columbia Plateau (USGS 1962), most likely in the vicinity of Hells Canyon, Oregon. The extrusions of basaltic lava probably continued intermittently into the Pliocene Epoch (5.3-2.6 million years ago), covering sedimentary deposits, forming new basins of deposition, and changing stream courses (USGS 1962). This volcanic flow is called the Columbia Basin Basalt Group. The CRBG is that thick sequence of basaltic lava flows underlying southeastern Washington and extending into Oregon and Idaho (USGS 1962). The individual flows range in thickness from a few feet to more than 100 ft. The total basalt thickness in the central part of the plateau is estimated to be greater than 10,000 ft (USGS 1990b) and the maximum thickness in the Yakima River basin is more than 8,000 ft (USGS 1962).

Extrusions and flows of volcanic material now within the CRBG formation occurred intermittently over millions of years. Individual flow layers range from less than 20 to more than 200 feet in thickness. Individual flows may differ considerably in thickness from place to place (USGS 1962). Enough time elapsed between extrusions to allow considerable weathering of the uppermost frothy surfaces of lava flows and to allow development of thin soil zones, which were later buried by subsequent flows (USGS 1962). Bubbles of gases emitted from the solidifying molten lava created zones of abundant gas cavities (vesicles). The vesicles are sometimes filled with secondary minerals deposited by water percolating through the rocks. The vesicles are separated from each other by the encasing solid rock, except where they have been fractured or deeply weathered (USGS 1962). Natural gas was extracted from beneath the LYVGWMA between 1929 and 1941 (Alt/Hindman 2007).

#### The Ellensburg Formation

At the west side of the basaltic lava plain, approximately where the present Cascade Mountains now stand, there was a region of more intense volcanic activity before the period of basaltic lava extrusion ended. This volcanic activity was at an elevation somewhat higher than the lava plain but probably lower than the present Cascades. The volcanic debris created by this volcanic activity in those ancestral Cascade Mountains was the source of the sedimentary materials; which were subsequently deposited upon the lava plain, either transported by eastward flowing streams, in lakes, or aeolian processes moving ash and pumice, that together constitute the Ellensburg Formation (USGS 1962). The majority of the volcanic materials created by the volcanic activity was deposited upon the lava plain after these flows ceased and the Cascades continued to rise (USGS 1962; USGS 1999a).

The Ellensburg Formation consists of 85 to 95 percent semiconsolidated clay, silt, and sand with only 5 to 15 percent gravel and conglomerate. It often appears as sedimentary interbeds found between the various CRBG formations, members, and flow units. These interbeds vary in nature and composition, typically ranging between 1 and 100 feet thick. The color is predominantly gray, tan, and buff, although there are a few relatively thin rusty-brown sand and gravel strata. The clay and silt parts are massive at most places, but excellent bedding and shaly parting also are found. Some sand and gravel strata are crossbedded. The thickness of the individual beds ranges from a few feet to more than 100 feet; strata of clay, silt, and fine sand usually are somewhat thicker than strata of the coarser materials (USGS 1962). "More than 1,000 ft of course-grained volcanclastic sediment has accumulated over many parts of the Yakima River Basin." (USGS 1999a).

The Ellensburg formation is mostly tough and hard, although some sand and gravel strata are weakly cemented. The silt and sand are composed chiefly of pumice, volcanic ash, quartz, and scattered feldspar and hornblende particles. Clay-size particles consist mostly of finely divided pumice and ash. The gravel contains large amounts of tuff and a distinctive purple or gray tuffaceous hornblende andesite. Cementing material is mostly argillaceous (containing clay). Minor amounts of diorite, quartzite, and various granitic and metamorphic rock types also are found locally in the gravel; basaltic fragments are rare (USGS 1962).

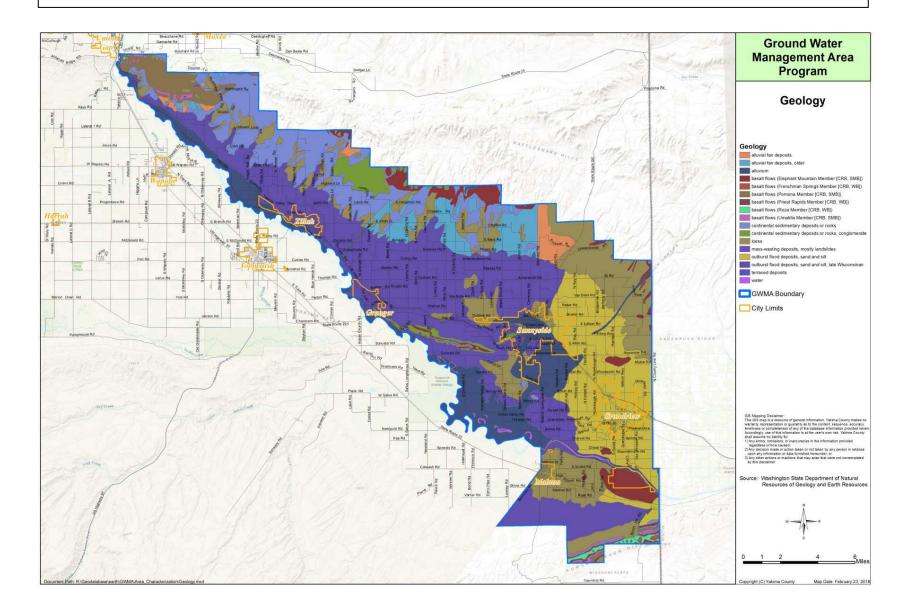
## Lower Yakima Valley Fill

A variety of fine and coarse-grained sediments, including and overlying the Ellensburg Formation and the underlying major basalt flows, also exists within the Toppenish Basin (EPA 2012). These sediments pinch out along the flanks of the ridges. They include Touchet Beds, loess, thick alluvial sands and gravels deposited by rivers and streams, including those within the Ellensburg Formation, and other unconsolidated and

weakly consolidated valley-fill comprising glacial, glacio-fluvial, lacustrine, and alluvium deposits resulting from catastrophic glacial outburst floods that inundated the lower Yakima River Basin (USGS 1999a) (EPA 2012) (USGS 2009a) (USGS 1990b) (USGS 1962).

About 16,000 years ago these glacial outburst floods created "Lake Lewis" in what is today the Lower Yakima Valley and the LYVGWMA when the restricted flow of waters from periodic cataclysmic floods from Glacial Lake Missoula, pluvial Lake Bonneville, and perhaps from subglacial outbursts backed up through the constriction formed by the Wallula Gap in the Horse Heaven Hills. Water also backed up further downstream on the Columbia River between Washington and Oregon, delaying the drainage of Lake Lewis. The water remained for iterative undefined periods before the flood waters drained through Wallula Gap, permitted surfacious loess and basalt materials collected in the floods' transit southeast from the Spokane area to settle out to the lake's bottom, thus forming at least some of the fine grained gravelly and sandy materials extant today on the valley bottom of the Yakima River within the LYVGWMA. Lake Lewis intermittently reached an elevation of about 1,200 feet (370 m) above today's sea level before draining to the Columbia through Wallula Gap (Bjornstad 2006) (Alt 2001) (Carson/Pogue 1996).

#### Structural Geology


The Columbia Plateau has been informally divided into three physiographic subprovinces (Meyers and Price 1979; USGS 2009a). The western margin of the Columbia Plateau contains the Yakima Fold Belt subprovince.

#### The Yakima Fold Belt

The LYVGWMA lies within the Yakima River Basin within the Yakima Fold Belt. The Fold Belt is a highly folded and faulted region underlain by various consolidated rocks ranging in age from the Precambrian Supereon to the Cenezoic Era's Miocene Epoch, and unconsolidated materials and volcanic rocks of the Quaternary Period's Pleistocene Epoch. Dominant geologic structures in the Yakima Fold Belt in the western part of the Columbia Plateau are long, narrow, east-west to east-southeasterly trending anticlinal ridges with intervening broad synclinal basins that essentially partition the groundwater flow system. "The anticlines function as groundwater flow barriers" (USGS 2009a; Vaccaro 2016). The folding that created the anticlines and synclines within the Yakima region are the consequence of tectonic compression (McCaffrey et al., 2016), initially of the sedimentary rocks now underlying the Columbia River Basalt Group, from south of the Fold Belt region (the anticline's slopes are steeper on the north side) which probably began during the latter part of the Cenezoic Era during the Pliocene Epoch. The Ellensburg sedimentary material was still accumulating during this time. Earlier explanations suggested that the folding was likely related to the Cascade uplift and subsidence of the center of the lava body approaching from the southeast (Foxworthy 1962). The folding proceeded slowly enough so that the Yakima River could continue to erode its channel (Union Gap) as the Ahtanum Ridge anticline rose (Foxworthy 1962). The Ahtanum Ridge and the Rattlesnake Hills are the same anticline (Alt/Hyndman 2007). The Toppenish Ridge is another anticline, forming the southern boundary of the Toppenish Basin.

As the folding continued, the sedimentary material previously deposited on the parts of the plain that became the anticlinal ridges was eroded off and carried down into the centers of the synclinal basins. This process accounts in part for the great thickness of the Ellensburg formation (USGS 1962).

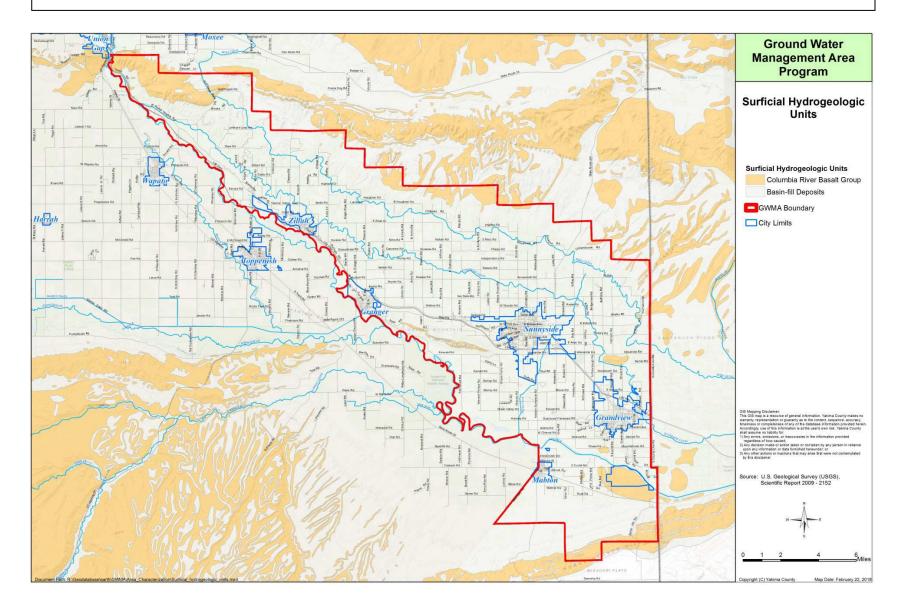
# Figure 5 - Geology



# Hydrogeology

The geologic framework and some of its hydrogeologic units of the Columbia Plateau regional aquifer system was described by Drost and others (USGS 1990b). The aquifer system consists of a large thickness of basalt made of numerous flows with minor interbedded sediments (USGS 1990b). The principal water bearing zones in the basalt sequence are those upper parts of certain flows rendered relatively permeable by weathering, jointing, and vesicularity (USGS 1962).

The lithology, or general physical character, of the materials within the hydrogeologic units of the LYVGWMA was described by USGS in its 2009 report (USGS 2009a), see Table 1. The several units described have various consolidated or unconsolidated structure. The unconsolidated units include alluvial, alluvial fan, terrace, glacial, loess, lacustrine, and flood (Touchet Beds) deposits that range from coarse-grained gravels to fine-grained clays, with some cemented gravel (Thorp gravel and similar unnamed gravels). Most of the unconsolidated units consist of coarse-grained deposits. The consolidated units are principally deposits of the Ellensburg Formation, but also include some undifferentiated continental sedimentary deposits. These units include continental sandstone, shale, siltstone, mudstone, claystone, clay, and lenses or layers of uncemented and weakly to strongly cemented gravel and sand (conglomerate). These clastic deposits are one of the most stratigraphically complex parts of the aquifer system (USGS 2009a).


#### TABLE 1 – HYDROGEOLOGY WITHIN THE ELLENSBURG AND OTHER SEDIMENTARY UNITS

| Structural Basin | Mapped   | Unit             | Lithology                                    |          | Thickness |        |
|------------------|----------|------------------|----------------------------------------------|----------|-----------|--------|
| Name             | Area     |                  |                                              | Range    | Average   | Median |
|                  |          | 1 (fine grained  | Touchet Beds, terrace, loess, and some       |          |           |        |
| Toppenish Basin  | 440      | consolidated)    | alluvial deposits                            | 0 to 80  | 10        | 10     |
|                  |          | 2 (coarse        |                                              |          |           |        |
|                  |          | grained          |                                              |          |           |        |
|                  |          | unconsolidated)  | Coarse-grained sand and gravel deposits      | 0 to 270 | 90        | 80     |
|                  |          |                  | Consolidated deposits of the upper           |          |           |        |
|                  |          |                  | Ellensburg Formation and undefined           |          |           |        |
|                  |          | 3 (consolidated) | continental sedimentary deposits             | 0 to 970 | 350       | 320    |
|                  |          | 4 (fine grained  | Top of Rattlesnake Ridge unit of the         |          |           |        |
|                  |          | deposits)        | Ellensburg Formation or "Blue Clay unit"     | 0 to 520 | 170       | 140    |
|                  |          | 5 (coarse        |                                              |          |           |        |
|                  |          | grained          | Base of Rattlesnake Ridge unit of the        |          |           |        |
|                  |          | deposits)        | Ellensburg Formation                         | 0 to 140 | 20        | 20     |
|                  |          | 1                | Alluvial, alluvial fan, loess, terrace, dune |          |           |        |
|                  | Portions | (unconsolidated  | sand, Touchet beds, Missoula flood, and      |          |           |        |
| Benton Basin     | of 1020  | )                | Ringold Formation deposits                   | 0 to 870 | 120       | 70     |
|                  |          |                  | Ellensburg Formation and undenfined          |          |           |        |
|                  |          | 2 (consolidated) | continental sedimentary deposits             | 0 to 680 | 100       | 60     |

(AFTER USGS 2009A)

Bedrock units underlie the hydrogeologic units (USGS 2009a). As bedrock units likely hold little or no groundwater to be taken up by wells for domestic water supply, they are not discussed here. Most domestic wells are in the sediments above basalt. There are several basalt wells providing domestic water supply along the northern fringe of the project area.

Figure 6, derived from the USGS 2009 report, shows the surficial hydrogeologic units within the LYVGWMA.



# FIGURE 6 – SURFICIAL HYDROGEOLOCIC UNITS

#### Aquifers

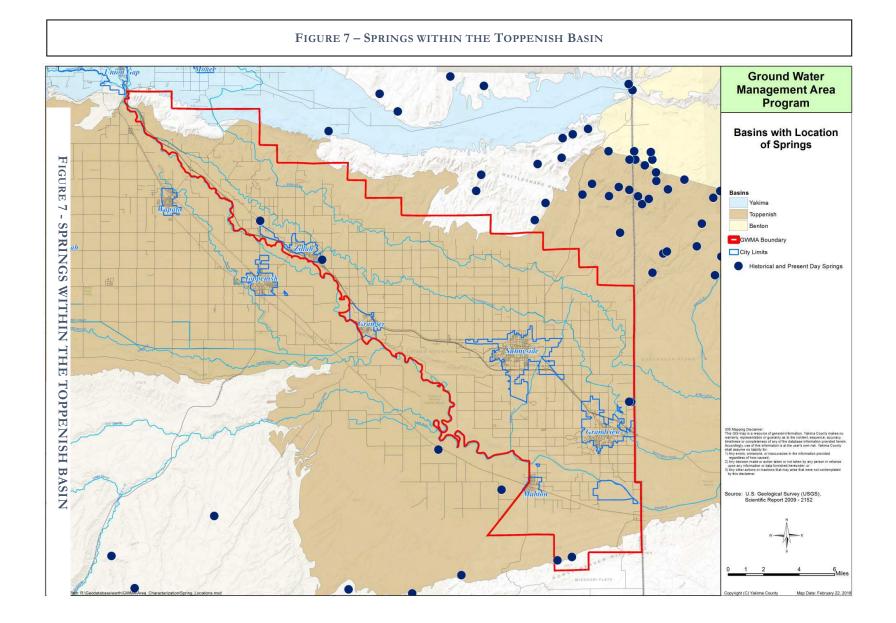
In 2009, the United States Geological Survey published its study of the geology, hydrology and hydrogeology of aquifers in the Yakima River Basin. The study found that there are two main aquifer types in the LYVGWMA. The first is a surficial unconfined to semi-confined alluvial aquifer. This aquifer is composed of highly layered alluvial material with predominantly silt, sand, and cobbles with a total thickness of up to 500 feet (USGS 2009a).

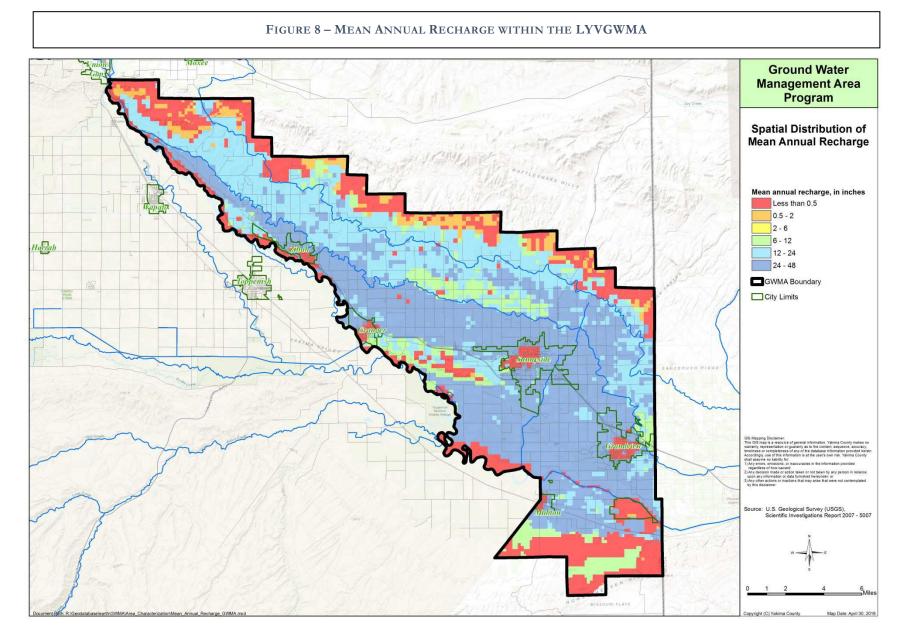
The second aquifer is an extensive basalt aquifer of great thickness underlying the surficial aquifer. The basalt aquifer is believed by the USGS to be semi-isolated from the surficial aquifer and stream systems. Natural groundwater flow within the shallower, surficial aquifer generally follows topography, but may be locally influenced by irrigation practices, ponds, lagoons, drains, ditches, and canals. Groundwater in this shallower aquifer generally follows toward the Yakima River (USGS 2009a) and is used locally for irrigation and residential water supply.

An aquifer is rock material where the pore space in the material is saturated, or full of water. Ground water occurs in the interstices in the rock material, in the spaces not occupied by solid material. If there is a pressure gradient in that material and the abundance, character, and degree of interconnection of those spaces can create a pathway for water to follow, it will move or be transmitted.

Natural rock materials differ in porosity. Porosity is a measure of the ability of the rock to contain water. It is the ratio of the volume of its interstices to its total volume. The porosity of some consolidated rocks, such as tightly cemented sandstone or massive lava flows, is only a few percent or even a fraction of a percent. The porosity of some clays may exceed 50 percent. In unconsolidated rocks, the well-sorted materials, such as clay or clean even-textured sand or gravel, have very high porosity. Poorly sorted materials, in which the smaller particles fill the openings between the larger grains, have low porosity.

Both "confined" and "unconfined" aquifers are known to exist within the LYVGWMA. A "confined aquifer" is one in which water has become confined between relatively impermeable materials. Water in confined aquifers will rise higher in a well than the bottom of the overlying confining bed. Such wells are called "artesian." The level to


which water will theoretically rise in an artesian well is called the potentiometric (or piezometric) surface.


An "unconfined aquifer" (or "water table aquifer") is one where the upper surface of the water in the rock mass is at atmospheric pressure due to direct contact with the atmosphere through the pore space in the overlying soil and rock, and there is not confining pressure imparted by an overlying impermeable material. This surface level is called the "water table." The water table is the upper surface of an unconfined aquifer. The level at which water stands in a well penetrating an unconfined zone of saturation represents the water table at that place.

Aquifer dynamics are generally described in terms of amounts of water entering and exiting the aquifer. "Recharge" is the natural replenishment of an aquifer's water volume by downward seepage from the surface (rainfall, snowmelt, infiltration from lakes, wetlands and streams, irrigation or waste water), or groundwater moving from other underground sources. Water exiting the aquifer (water seeping from the ground (spring), pumped from a well, or departing the aquifer into surface water (wetland, stream, lake, estuary, ocean) or the atmosphere) is "discharge". The water table fluctuates chiefly in response to variations in recharge to, and discharge from, the ground-water body. Natural recharge may occur because of precipitation. Artificial recharge may occur through irrigation. Surface water streams or irrigation canals that cross permeable zones may recharge the aquifers beneath. Surface water streams or rivers that flow at an elevation below the water table discharge water from the aquifer.

Both the potentiometric surface of a confined aquifer and the water table of an unconfined aquifer are usually sloping, irregular, fluctuating surfaces. They are higher in areas of ground-water recharge, lower in areas of discharge, and affected by differences in permeability within the aquifer. The slope of either surface is called the "hydraulic gradient."

Figure 7, derived from USGS' 2009 study (USGS 2009a), shows the location of known springs within the Toppenish Basin. Figure 8, derived from the same study, shows the mean annual recharge of the surficial aquifers within the LYVGWMA.





## Mean Annual Groundwater Recharge

"Groundwater recharge" is a combination of all water (surface water, irrigation water, waste water, precipitation, etc.) that infiltrates the ground surface. "The delivery and use of surface water in the irrigation districts provide a source of recharge (more than 10 inches per year and in some areas more than 20 inches per year" (Vaccaro 2016; USGS 2007a). These are "acre-inches," a portion of the area's precipitation and around 3 acre feet of delivery by the irrigation districts. They are typically what would be called the non-consumptive portion of water use, that which actually soaks into the ground past the root zone / plant uptake. From there it goes to drains, surficial aquifers or deeper aquifers, at some eventual time either returning to the river or being pumped and returned to the surface for use. The USGS' conclusion of recharge was established by a one-day time-step model, utilizing the daily inputs from 25 years (1959-2001) of historical records, taking into account droughts, cool years, etc. It takes precipitation, temperature, humidity, evaporation and crop-specific evapotranspiration of plants into account.

Figure 8 reflects the conclusions derived from Figure 10 of the USGS' 2007 report (USGS 2007a). It is possible that the current state of mean annual groundwater recharge differs from that represented by this figure. Members of the LYVGWMA felt intuitively that the conclusions of the report were too high and failed to take into consideration changed conditions relevant to groundwater recharge. Members also believed that the increments of estimated annual recharge, i.e. 12-24 inches, 24-48 inches, were too great to be informative about any particular segment of land within the LYVGWMA. A better estimate might be derived by using a more recent period of climate condition, considering evolved irrigation methods, taking significant conversion of irrigation method into account, considering actual irrigation water application rather than estimated irrigation water application, considering irrigation canal lining, and studying the LYVGWMA more particularly rather than the basin-wide study of the USGS' 2007 report.

Vaccaro studied recharge in the context of water supply available for potential rural residential development (Vaccaro 2016). Two "domains," "Rattlesnake Hills Domain," and the "Mabton Domain," were identified within the LYVGWMA. "The Rattlesnake Hills Domain (246 square miles) includes the relevant lands south of the Moxee Drain and east and north of the Yakima River (left bank). The eastern boundary of the domain is the

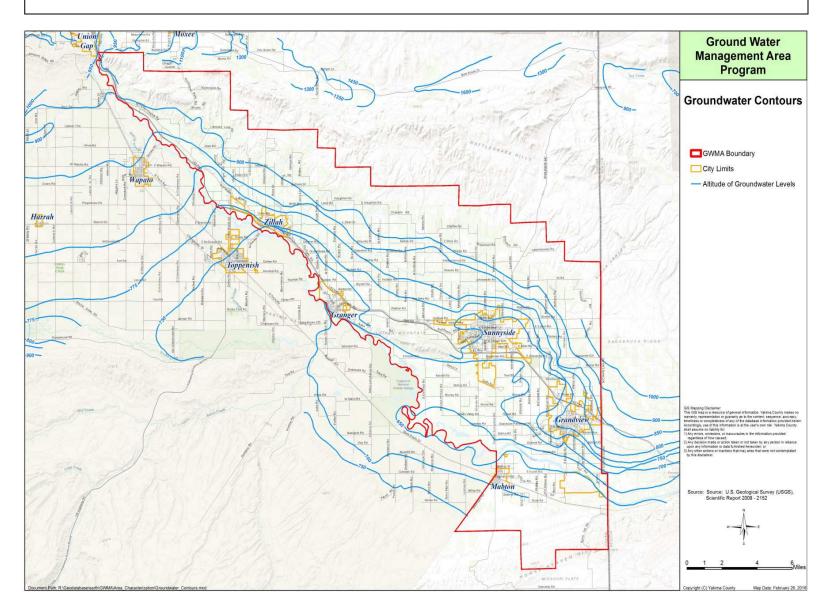
boundary between Yakima and Benton Counties." The "Mabton Domain" (40.9 square miles) includes the area north of Horse Heaven Hills (defined by the ridge line) east of the Yakima Nation boundary, south of the Yakima River and west of the Yakima-Benton County line. These two domains thus include the same area as that contained within the LYVGWMA. The Rattlesnake Hills Domain was divided into sectors, one below the Roza Irrigation District canal ("Sector 1"), the other above that canal ("Sector 2"), both of which are contained within the LYVGWMA boundaries. The Mabton Domain was not further divided. (Vaccaro 2016).

"Sector 1 [of the Rattlesnake Hills Domain] (194 square miles) includes the irrigation districts present on Rattlesnake Hills such as Sunnyside Valley [SVID], Roza [RID] and Union Gap [UGID]. The delivery and use of surface water in the irrigation districts provide a source of recharge (more than 10 inches per year and in some areas more than 20 inches per year (USGS 2007a) to the system. The sector includes the cities of Zillah, Sunnyside, Granger, and Grandview. Except for the northern and eastern part of the sector, the area is typified by basin fill deposits generally over 200 feet thick. That is, basin-fill deposits over more than two-thirds of this sector are almost everywhere greater than 200 feet, and over about one-half of the sector they are greater than 400 feet. In the smaller, southeastern part of the sector, the deposits are thinner and future residential wells may need to be finished into the Saddle Mountains unit. Most of the existing wells may need to be finished in the basin-fill deposits and much of the future pumpage in this sector would occur from these deposits except along the peripheral boundary with sector 2 or where the basin-fill deposits thin toward the east. Future wells near the boundary between the two sectors likely would be needed to be drilled deeper than wells downslope. Groundwater-level hydrographs indicate stable water levels in these deposits. The groundwater levels for the units indicate that future withdrawals from the basin-fill deposits would have minimal, if any affect, on the deeper Wanapum and Grande Ronde units."

"Recharge over most of th[e] area [in the Mabton Domain north of the 700 foot water level contour for the Saddle Mountains unit [described by] Vaccaro and others (USGS 2009a)] is more than 10 inches per year because of the influence of surface water irrigation [from the Roza Irrigation District]" (Vaccaro 2016).

## Groundwater Levels and Flow

The two main aquifers underlying the area bordered on the north by the Ahtanum Ridge, on the south by the Toppenish Ridge, and bisected by the Wapato Syncline (USGS 2009a). These include a surficial unconfined to semi-confined alluvial aquifer and basalt aquifers underlying the sedimentary deposits (USGS 2009a). The basalt is believed to be semi-isolated from the surficial aquifer and stream systems. Groundwater flow within both aquifers generally follows topography, with natural recharge occurring within the headlands and on the sides of the valley and discharge occurring to the Yakima River. This produces a major flow direction from northwest to southeast, and a minor component flowing northeast to southwest and southwest to northeast. It is likely that the minor components of flow are enhanced by irrigation practices upland from the Yakima River (USGS 2009a; Vacarro 2016).


Because the potentiometric surface or water table of confined and unconfined aquifers, respectively, are variable, it is difficult to determine with certainty the depth of either from the ground surface. The USGS has, however, established groundwater level contours that can be used to compare against ground surface contours. Figure 9, derived from USGS' 2009 report (USGS 2009a), shows groundwater level contours (without distinguishing whether that level occurs within the alluvial, basalt, or both parts of the aquifer system). Figure 10 shows ground surface contours (topography) in meters. Figure 11, derived from determining the distance between the two contours, shows calculated depth to groundwater.

The vadose zone is the unsaturated zone between the land surface and the top of the water table. Depth to water is the distance between the ground surface and the water table. Time of travel through the vadose zone is dependent on depth to water, the vadose zone material, the amount of recharge, and other factors. Earthen materials within the vadose zone have different degrees of "permeability." Permeability is a measurement of the rate of infiltration. Permeability is used on both unsaturated and saturated flow. It is a measure of the intrinsic properties of a material that describes the ability of fluids to move through the material. It is independent of moisture content. It is intrinsic to the material (aquifer

matrix). Moisture movement through the vadose zone is controlled by both material property and percent saturation or moisture content.

Unconfined (water-table) aquifers flow generally in accordance with the topography towards rivers, streams, lakes, and springs. The direction of groundwater flow in unconfined aquifers is normally perpendicular to groundwater contours premised upon measured or hypothetical water table levels (USGS 2009a). Groundwater flows from the direction of the highest potential energy to the lowest potential energy. The four types of potential energy that influence groundwater flow include gravitational potential, pressure potential, matric potential, and osmotic potential. The USGS has drawn its best judgment of the direction of that groundwater flow within the LYVGWMA. See Figure 16.

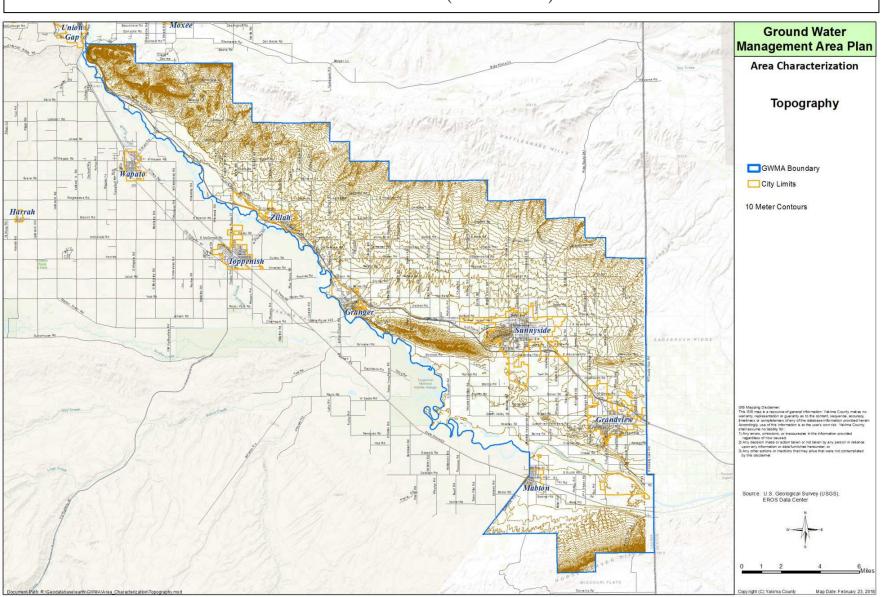
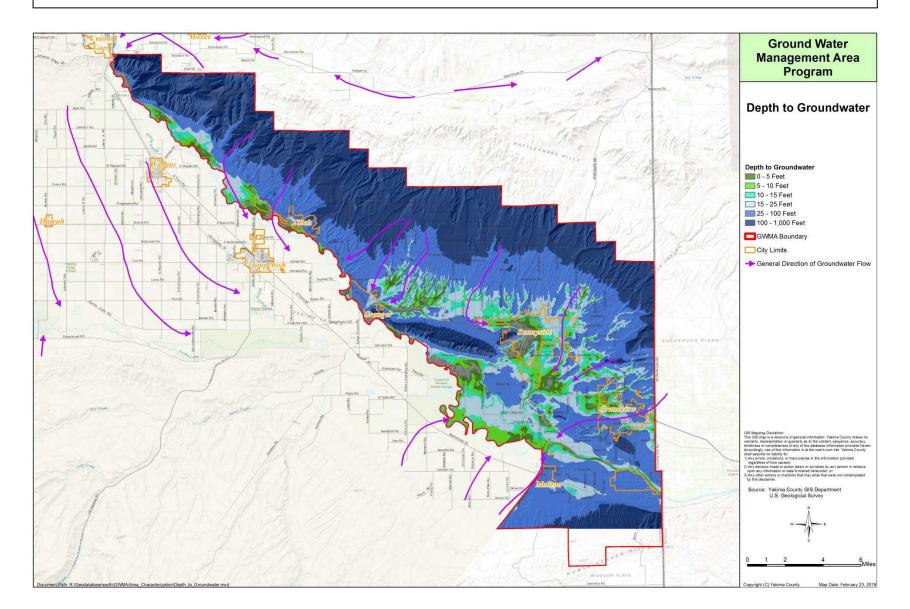
The hydraulic conductivity of bedrock units, CRBG basalts, and basin fill units were estimated from specific capacity data reported on drillers' logs by USGS (USGS 2009a). The median lateral  $K_h$  of bedrock, basalt, and basin fill units were 3, 3, and 6 ft/day in 9,833 and 882 wells, respectively, throughout the larger study area of the Yakima River Basin (USGS 2009a).

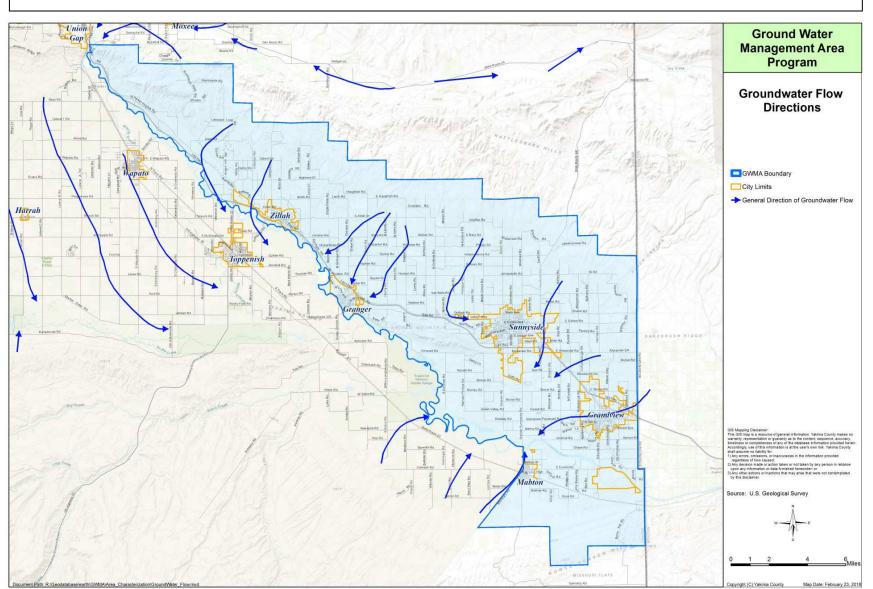


# FIGURE 9 - GROUNDWATER LEVEL CONTOURS ESTABLISHED BY USGS WITHIN THE LYVGWMA

# Topography

The topographical surface of the groundwater management area is undulating hillside running down (from an elevation of approximately 400 meters or 1312 feet above sea level) to the valley floor and river floodplain (at an elevation of approximately 230 meters or 755 feet above sea level). The topographical map on the next page illustrates essentially parallel elevation contours (denominated in meters)—evidence of a gradual descent from northnortheast along the Rattlesnake Ridge to south-southwest along the Yakima River.



FIGURE 10 - GROUND SURFACE CONTOURS (TOPOGRAPHY) WITHIN THE LYVGWMA

Sunnyside to Grandview and in the areas surrounding Mabton. Groundwater levels are deeper (25-100 feet) roughly in the areas between the SVID and RID irrigation canals. They become much deeper (100-1,000 feet) in areas above the RID irrigation canal.

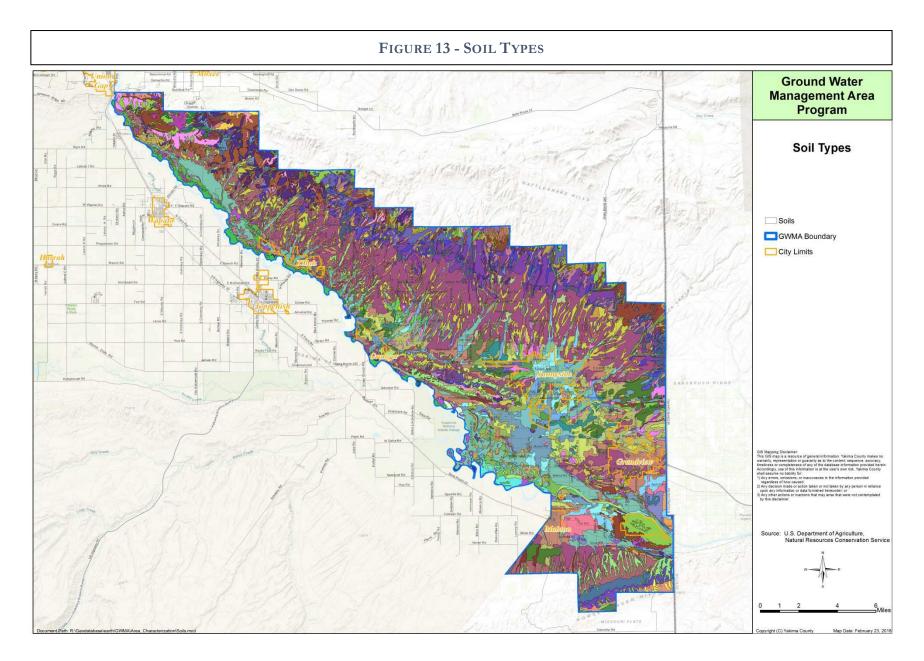


# FIGURE 11 - CALCULATED DEPTH TO GROUNDWATER WITHIN THE LYVGWMA

Figure 12 shows direction of groundwater flow within the LYVGWMA, as illustrated by USGS (USGS 2009a).



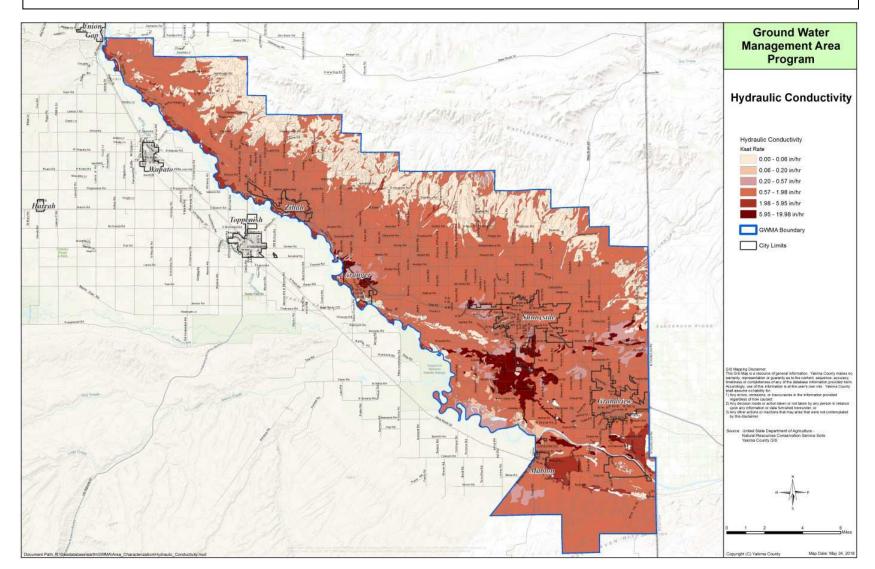
## FIGURE 12 - DIRECTION OF GROUNDWATER FLOW WITHIN THE LYVGWMA


## Soil Types

There are 89 soil types within the GWMA (NRCS Soil Survey). They differ based on constituency of materials (coarse to very fine sands, loams, clay), values of porosity, specific yield, hydraulic conductivity and infiltration rate. "Hydraulic conductivity" and "infiltration rate" are calculated presuming complete saturation of the soil material. Both quantify the three-dimensional volume of a liquid through a two-dimensional plane of a matrix.

Predominant soil types within the GWMA are Scoon silt loam and Burke silt loam (ground surface roughly above 300 meters or 1000 feet above sea level), Warden fine sandy loam interlineated generally northeast to southwest with Harwood-Burke-Wiehl very stony silt loams and Esquatzel silt loam (ground surface roughly between 300 meters or 1000 feet and 250 meters or 800 feet above sea level), and Esquatzel silt loam, Quincy loamy fine sand, Wanser loamy find sand, Warden fine sandy loam and Warden silt loam (roughly within the valley bottom between 250 meters or 800 feet and 200 meters or 650 feet above sea level). The hydraulic conductivity of each of these primary soil types is available from NRCS' *Web Soil Survey* at <a href="https://websoilsurvey.nrcs.usda.gov/app/">https://websoilsurvey.nrcs.usda.gov/app/</a> and is presented in Table 2 below. The rates set forth in the table presume full soil saturation. Because soils in the vadose (unsaturated) zone within the LYVGWMA are only intermittently wetted, by irrigation or precipitation, the rates set forth must be variously reduced for those soils.

| Primary Soil Types Within LYVGWMA |             |                        |  |  |  |  |  |  |  |  |
|-----------------------------------|-------------|------------------------|--|--|--|--|--|--|--|--|
| Soil Type                         | cu. In / hr | NRCS rate              |  |  |  |  |  |  |  |  |
| Warden silt loam                  | 0.57-1.98   | Moderate               |  |  |  |  |  |  |  |  |
| Warden fine sandy loam            | 0.57-1.98   | Moderate               |  |  |  |  |  |  |  |  |
| Esquatzel silt loam               | 0.57-1.98   | Moderate               |  |  |  |  |  |  |  |  |
| Shano silt loam                   | 0.57-1.98   | Moderate               |  |  |  |  |  |  |  |  |
| Quincy loamy fine sand            | 5.95-19.98  | Rapid                  |  |  |  |  |  |  |  |  |
| Wanser loamy fine sand            | 5.95-19.98  | Rapid                  |  |  |  |  |  |  |  |  |
| Harwood Burke-Wiehl silt loam     | 0.00-0.06   | Very slow, impermeable |  |  |  |  |  |  |  |  |
| Burke silt loam                   | 0.00-0.06   | Very slow, impermeable |  |  |  |  |  |  |  |  |
| Scoon silt loam                   | 0.00-0.06   | Very slow, impermeable |  |  |  |  |  |  |  |  |


TABLE 2 - PRIMARY SOIL TYPES HYDRAULIC CONDUCTIVITY (K) (NRCS SOIL SURVEY)





#### TABLE 3 - LIST OF ALL SOIL TYPES WITHIN THE LYVGWMA

All of the 89 soil types within the LYVGWMA illustrated in Figure 13 were sorted by Yakima County GIS into the hydraulic conductivity rate categories utilized by the U.S. Department of Agriculture, Natural Resources Conservation Service. These are illustrated in Figure 14.



## FIGURE 14 - SOIL TYPES IN LYVGWMA SIMPLIFIED IN HYDRAULIC CONDUCTIVITY GROUPS

## Climate

The Western Regional Climate Center (WRCC) maintains climate data at three stations within the Lower Yakima Valley at Wapato, Sunnyside, and Prosser. Temperatures have historically ranged from 90 to 24 degrees Fahrenheit over the course of a year (WRCC). The data does not anticipate or address climate change.

| WAPATO, WASH                                | ING <sup>-</sup>                                                                       | ΓΟΝ | (458 | 8959 | )   |     |     |     |     |     |     |     |        |
|---------------------------------------------|----------------------------------------------------------------------------------------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| Period of Record Mont                       | eriod of Record Monthly Climate Summary, Western Regional Climate Center, wrcc@dri.edu |     |      |      |     |     |     |     |     |     |     |     |        |
| Period of Record : 10/01/1915 to 09/05/2013 |                                                                                        |     |      |      |     |     |     |     |     |     |     |     |        |
|                                             | Jan                                                                                    | Feb | Mar  | Apr  | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
| Average Max.                                |                                                                                        |     |      |      |     |     |     |     |     |     |     |     |        |
| Temperature (F)                             | 39                                                                                     | 47  | 58   | 66   | 75  | 81  | 89  | 88  | 80  | 67  | 50  | 40  | 64.8   |
| Average Min.                                |                                                                                        |     |      |      |     |     |     |     |     |     |     |     |        |
| Temperature (F)                             | 23                                                                                     | 27  | 33   | 39   | 47  | 54  | 59  | 57  | 49  | 38  | 30  | 25  | 40.1   |
| Average Total                               |                                                                                        |     |      |      |     |     |     |     |     |     |     |     |        |
| Precipitation (in.)                         | 1                                                                                      | 0.7 | 0.6  | 0.5  | 0.5 | 0.6 | 0.2 | 0.3 | 0.3 | 0.5 | 1   | 1.2 | 7.35   |
| Average Total                               |                                                                                        |     |      |      |     |     |     |     |     |     |     |     |        |
| SnowFall (in.)                              | 5.8                                                                                    | 2.2 | 0.7  | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 1.9 | 5.4 | 15.9   |
| Average Snow Depth                          |                                                                                        |     |      |      |     |     |     |     |     |     |     |     |        |
| (in.)                                       | 2                                                                                      | 1   | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0      |

TABLE 4 – CLIMATE (WRCC)

| SUNNYSIDE, W          | VASH                                                                                   | HING   | STO    | N (45 | 5820 | )7) |      |     |     |     |     |     |        |
|-----------------------|----------------------------------------------------------------------------------------|--------|--------|-------|------|-----|------|-----|-----|-----|-----|-----|--------|
| Period of Record Mo   | eriod of Record Monthly Climate Summary, Western Regional Climate Center, wrcc@dri.edu |        |        |       |      |     |      |     |     |     |     |     |        |
| Period of Record : 09 | /14/1                                                                                  | .894 t | o 01/0 | )5/20 | 14   |     |      |     |     |     |     |     |        |
|                       | Jan                                                                                    | Feb    | Mar    | Apr   | May  | Jun | Jul  | Aug | Sep | Oct | Nov | Dec | Annual |
| Average Max.          |                                                                                        |        |        |       |      |     |      |     |     |     |     |     |        |
| Temperature (F)       | 39                                                                                     | 47     | 58     | 67    | 75   | 82  | 90   | 89  | 80  | 67  | 51  | 40  | 65.3   |
| Average Min.          |                                                                                        |        |        |       |      |     |      |     |     |     |     |     |        |
| Temperature (F)       | 23                                                                                     | 27     | 32     | 38    | 45   | 51  | 54.7 | 53  | 46  | 37  | 30  | 25  | 38.4   |
| Average Total         |                                                                                        |        |        |       |      |     |      |     |     |     |     |     |        |
| Precipitation (in.)   | 0.9                                                                                    | 0.6    | 0.5    | 0.5   | 0.5  | 0.5 | 0.18 | 0.3 | 0.4 | 0.6 | 0.9 | 0.9 | 6.8    |
| Average Total         |                                                                                        |        |        |       |      |     |      |     |     |     |     |     |        |
| SnowFall (in.)        | 4.5                                                                                    | 1.8    | 0.2    | 0     | 0    | 0   | 0    | 0   | 0   | 0   | 1.8 | 4   | 12.4   |
| Average Snow          |                                                                                        |        |        |       |      |     |      |     |     |     |     |     |        |
| Depth (in.)           |                                                                                        |        |        |       |      | No  | Data |     |     |     |     |     |        |

| PROSSER, WASH                               | ling                                                                                   | TON | (45 | 6768 | 3)  |     |     |     |     |     |     |     |        |
|---------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| Period of Record Mon                        | eriod of Record Monthly Climate Summary, Western Regional Climate Center, wrcc@dri.edu |     |     |      |     |     |     |     |     |     |     |     |        |
| Period of Record : 07/01/1925 to 01/04/2015 |                                                                                        |     |     |      |     |     |     |     |     |     |     |     |        |
|                                             | Jan                                                                                    | Feb | Mar | Apr  | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
| Average Max.                                |                                                                                        |     |     |      |     |     |     |     |     |     |     |     |        |
| Temperature (F)                             | 38                                                                                     | 46  | 56  | 65   | 73  | 80  | 89  | 87  | 78  | 65  | 49  | 40  | 63.9   |
| Average Min.                                |                                                                                        |     |     |      |     |     |     |     |     |     |     |     |        |
| Temperature (F)                             | 24                                                                                     | 28  | 33  | 38   | 45  | 50  | 55  | 53  | 47  | 39  | 31  | 26  | 38.9   |
| Average Total                               |                                                                                        |     |     |      |     |     |     |     |     |     |     |     |        |
| Precipitation (in.)                         | 1.1                                                                                    | 0.7 | 0.6 | 0.6  | 0.6 | 0.7 | 0.2 | 0.3 | 0.4 | 0.7 | 1   | 1.2 | 7.95   |
| Average Total                               |                                                                                        |     |     |      |     |     |     |     |     |     |     |     |        |
| SnowFall (in.)                              | 2.6                                                                                    | 1.2 | 0.1 | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0.9 | 2.3 | 7.2    |
| Average Snow Depth                          |                                                                                        |     |     |      |     |     |     |     |     |     |     |     |        |
| (in.)                                       | 1                                                                                      | 0   | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0      |

## Land Use

Agriculture is the primary economic and land use activity in the area. Approximately 70-80 percent of the area is used for agriculture. Agricultural production on the 464,000 irrigated acres within the Yakima River Basin is estimated to be worth over \$2 billion (apples: \$1 billion, dairy: \$900 million, hops: \$500 million) annually.

In 2007, the total market value of Yakima County crops sold was \$1,203,806,000, and the average market value per farm was \$340,058. In 2012, the total market value of Yakima County crops sold was \$1,645,510,000 and the average market value per farm was \$523,548 (YCDAa).

In 2007, the value of Yakima County milk production was \$325,000,000. In 2012, the value of Yakima County milk production was \$439,000,000 (YCDAb).

In 2007, Yakima County's Net Cash Farm Income was \$372,055,000 and its Net Cash Farm Income per farm was \$105,100. In 2012, its Net Cash Farm Income was \$321,705,000 and its Net Cash Farm Income per farm was \$102,356 (YCDAc).

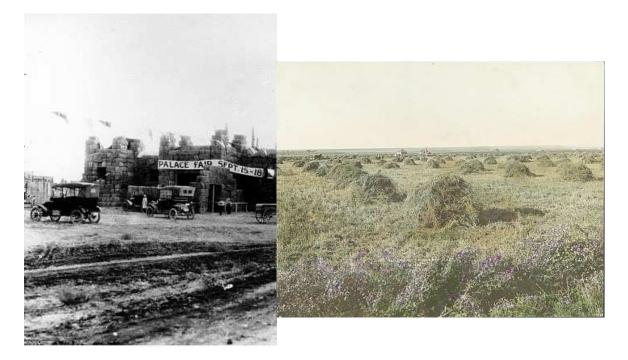
In 2007, the 68,087 acres of fruit trees in Yakima County were valued at \$749,883,000. In 2012, the 62,415 acres of fruit trees in the County were valued at \$935,452,000 (YCDAd).

Most cropland in the area is irrigated. Major commodities grown in the valley include apples, pears, cherries, peaches, vegetables, hay, mint, and hops. In 2002, Yakima County ranked first statewide for apple, milk, hop, and grape production and first nationally for apple and hop production. Dairy operations were greatly expanded starting in the late 1980's, (WSDA 2013) and Yakima County cattle reached nearly 40 percent of Washington State's cattle population by 2018 (YCDAe). Also, animal feeding operations operate at various sizes from very small home lots to large commercial feedlots. The dairies and animal feeding operations are concentrated in the lower parts of the valley in and around the cities of Sunnyside, Grandview, Mabton and Granger; although some occur in more disperse parts of the valley on the Yakama Indian Reservation.

Viewed from the perspective of American history, problems of nitrate contamination have been identified in locations throughout the United States where community and rural population growth and more intensive agricultural practices have been practiced for extended periods. (USGS 2003c) (Roman et al.) (USGS 1990a) (Foster) (Vermont) (USGS 1993a) (Anderson) (USGS1985) (Beck) (Royte) (USGS 1984) (Lilbra et al.) (Kross et al.). Nitrate contamination has been identified as a public concern in New England, the Ohio Valley, southwest Georgia, the Middle West, and ultimately in the American West; particularly in Montana, Idaho, California, and now Eastern Washington.

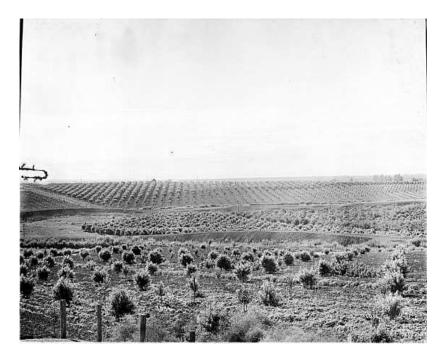
Catholic Missionaries arrived in the Yakima River Basin in 1848. They established a mission in 1852 on Atanum (now Ahtanum) Creek, using irrigation on a small scale. Miners and cattlemen immigrated to the basin in the 1850s and 1860s. In 1859, Ben Snipes first drove cattle through the Yakima Valley. Five years later, he returned and established the Snipes and Allen Company; grazing 40,000-50,000 head of cattle in the Lower Yakima Valley. By the 1880s, it is estimated that there were 200,000 cattle; 350,000 sheep; and 125,000 horses grazing in the Yakima Valley. With increasing settlement in the mid-1860s, irrigation of the valley bottoms began. Outlying areas were used extensively for raising stock. Private companies began to deliver water through canal systems built between 1880 and 1904 for the irrigation of large areas. Irrigated agriculture began to be practiced more widely at this time. The Northern Pacific Railway was constructed through the Yakima Valley, reaching Yakima in December 1884 and Seattle in 1896, facilitating the development of irrigated agriculture through transport of agricultural goods to markets. Statehood in 1889 assisted Lower Yakima Valley agricultural growth, Yakima contending for state capital. When the National Reclamation Act was passed in 1902; about 85,000 acres were under irrigation in the Yakima Valley, mostly by surface water (Boening).

By 1901, farming had largely replaced livestock ranching in the easily irrigated acres of the valley. A state survey of that year reported the following crops grown in the Yakima Valley: apples, pears, prunes, plums, cherries, apricots, peaches, and grapes; alfalfa, corn, wheat, barley, oats, rye, flax, broom corn, other grasses including brome, orchard, tall meadow fescue, timothy, red top, and clover; melons, potatoes, garden vegetables, hops and sugar beets (Jensen).


## Crops

The Yakima Valley Museum maintains a collection of photographs that indicate significant production of hops in the early period, primarily in the Moxee and North Yakima




area.5

Above Union Gap, early crops included hops. In the Lower Valley, early agriculture primarily involved the production of hay (Jensen).



<sup>&</sup>lt;sup>5</sup> Historical photographs courtesy of the Yakima Valley Museum. For further study, see <a href="http://www.yakimamemory.org/">http://www.yakimamemory.org/</a>

Newly planted orchards were planted in the Sunnyside area by 1908:



Between 1905 and 1912 the lower Yakima Valley towns of Sunnyside, Mabton, Toppenish, Wapato, Grandview, Granger, and Zillah were all incorporated.

Another survey assembled in 1917 showed the following crops and agricultural products produced in the Yakima Valley: strawberries, cherries, prunes, apples, peaches, pears, apricots, grapes, cantaloupes, and watermelons; onions, turnips, green corn, carrots, rutabagas, cabbage, asparagus, tomatoes, green peppers, squash, pumpkins, beans, potatoes, hops, and sugar beets; alfalfa hay, wheat, oats and barley (WSDA 2013).





Field crops such as potatoes, onions, and corn; primarily watered by flood irrigation, either through total inundation or rill irrigation, were successful crops by the early 1920s:

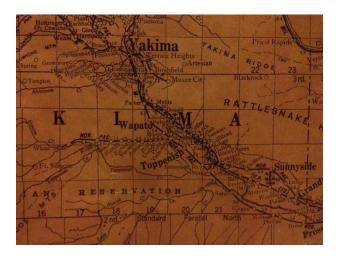


Tree fruits had become successful export products by the 1930s.



The Federal Reclamation Act of 1902 and Washington State's Yakima Federal Reclamation Act of 1905 authorized construction of water delivery facilities to irrigate about 500,000 acres of land within the Yakima River Basin, including those within the Lower Yakima Valley. Six dams and five reservoirs were constructed as part of the Yakima Project.




These Federal reservoirs provide storage to meet water requirements of the major irrigation districts during the period of the year, called "storage control," when the natural streamflow from unregulated streams can no longer meet demands.

Farm sizes were relatively small during the first half of the twentieth century. There were 6,351 farms in Yakima County, making up 600,106 acres of farmland, in 1925 (WSDA 2013).

"Farmers often produced their own livestock feed on farm, and maintained soil fertility through crop rotations and the retention of manure and crop residues on-farm. Weeds, insects, and plant diseases were controlled largely through mechanical practices, crop rotation, and the use of natural predators. During this time the conversion from horse-powered farming to the widespread use of tractors was taking place.... This spread of mechanization made it possible for farmers to use agricultural practices like intensive inversion-based tillage that remove all cover from the soil and use large amounts of fuel" (WSDA 2013).

The National Map Company's 1930 map entitled Latest Official Survey of Washington shows the route of two railroads then running through the GWMA area, with which to ship

agricultural goods to market (Presby Museum; Goldendale, Washington). The density of the railroad's depots indicates the abundance of agricultural commodity available to be sent to market. The Union Pacific route stopped in Grandview, Forsell, Waneta, Midvale, Morris, Emerald, Bain, Noride, Granger, Blaine Acres, Dalton, Boone, Pam, Zillah, Buena, Flint, Sawyer, Dunbro and Parker en route to Union Gap and Yakima. The Northern Pacific route stopped at Grandview, Lichty, Sunnyside, Outlook Nass, Sinto, Granger, Boone, Gilliland, Cenauer, Zillah, Keck, Cutler, Buena, Sawyer, Donald, Mellis, and Parker en route to Union Gap and Yakima.



The number of farms and the area being farmed throughout Yakima County both stabilized during the 1940s. In the 1950s, the total number of farms began to decrease while the total amount of land being farmed increased, due primarily to the growth of land used as pasture. Between the 1960s and early 2000s, the total amount of land being farmed in Yakima County remained relatively static. It is reasonable to presume that the same trends occurred more specifically within the Lower Yakima Valley area.

Information regarding the total number of acres farmed in each crop category throughout Yakima County was collected by the U.S. Department of Commerce (USDOC), Bureau of the Census and published in the United States Census of Agriculture (USDOC Agriculture). The census information does not segregate data into geographic subdivisions of Yakima County. Nevertheless, the information does reflect trends in agricultural practices within the LYVGWMA, as this area constitutes a major portion of the County's agricultural economy.

| Summary of Yakima County Acres Farmed As Reported in USDOC |                                |      |       |      |  |  |  |  |
|------------------------------------------------------------|--------------------------------|------|-------|------|--|--|--|--|
| Agricultural Censuses (numbers rounded) (WSDA 2013)        |                                |      |       |      |  |  |  |  |
|                                                            | Number of acres farmed (x1000) |      |       |      |  |  |  |  |
|                                                            | 1935                           | 1959 | 1982  | 2007 |  |  |  |  |
| Apples, cherries, peaches, pears,                          |                                |      |       |      |  |  |  |  |
| plums, prunes and grapes                                   | 52.0                           | 83.0 | 89.0  | 95.0 |  |  |  |  |
| Corn, wheat, oats, barley, rye and                         |                                |      |       |      |  |  |  |  |
| triticale                                                  | 55.0                           | 94.0 | 101.0 | 83.0 |  |  |  |  |
| Hay, forage, haylage and silage                            |                                |      |       |      |  |  |  |  |
| (including small grains cut for                            |                                |      |       |      |  |  |  |  |
| hay, wild hay, sorghum cut for                             |                                |      |       |      |  |  |  |  |
| silage or greenchop)                                       | 71.0                           | 49.0 | 32.0  | 52.0 |  |  |  |  |
| Potatoes, sugar beets, mint, hops,                         |                                |      |       |      |  |  |  |  |
| dill and dried herbs                                       | 18.0                           | 48.0 | 36.0  | 44.0 |  |  |  |  |
| Vegetables (including snap and                             |                                |      |       |      |  |  |  |  |
| string beans, cabbages, sweet                              |                                |      |       |      |  |  |  |  |
| corn, tomatoes and watermelons)                            | 6.0                            | 23.0 | 20.0  | 10.0 |  |  |  |  |
| Field seeds and grass seeds                                | 0.0                            | 10.0 | 0.5   | 1.0  |  |  |  |  |
| Legumes (excluding cover crops)                            | 0.1                            | 0.3  | 3.3   | 0.5  |  |  |  |  |
| Berries                                                    | 0.0                            | 0.1  | 0.0   | 0.1  |  |  |  |  |

## TABLE 5 - AGRICULTURAL CENSUS DATA - GENERAL CROP TYPES

Some County-wide information on specific field crops is also available from the USDOC Agricultural Censuses.

| USDOC Agricultural Censu  | USDOC Agricultural Censuses (numbers rounded) (WSDA 2013) |       |       |       |  |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------|-------|-------|-------|--|--|--|--|--|--|
|                           | Number of acres farmed (x1000                             |       |       |       |  |  |  |  |  |  |
|                           | 1935                                                      | 1959  | 1982  | 2007  |  |  |  |  |  |  |
| Sweet Corn                | 1.00                                                      | 9.00  | 5.00  | 2.00  |  |  |  |  |  |  |
| Asparagus                 | 2.00                                                      | 10.00 | 10.00 | 2.50  |  |  |  |  |  |  |
| Hops                      | 4.00                                                      | 19.00 | 19.00 | 19.00 |  |  |  |  |  |  |
| Mint                      | 0.00                                                      | 10.00 | 25.00 | 10.00 |  |  |  |  |  |  |
| Sugar Beets               | 1.00                                                      | 19.00 | 8.00  | 2.00  |  |  |  |  |  |  |
| Alfalfa                   | 65.00                                                     | 40.00 | 30.00 | 41.00 |  |  |  |  |  |  |
| Alfalfa seed              | 0.30                                                      | 10.00 | 3.00  | 1.00  |  |  |  |  |  |  |
| Wheat                     | 20.00                                                     | 31.00 | 60.00 | 21.00 |  |  |  |  |  |  |
| Corn for grain and silage | 8.00                                                      | 43.00 | 21.00 | 42.00 |  |  |  |  |  |  |
| Barley                    | 7.00                                                      | 17.00 | 17.00 | 0.50  |  |  |  |  |  |  |

TABLE 6 - AGRICULTURAL CENSUS DATA - FIELD CROPS

According to the information contained in several years' Agricultural Census, the number of cattle raised in Yakima County (excluding dairy cows) increased from 45,403 animals in 1925 to 212,762 animals in 2007. The number of dairy cows in Yakima County was stable at about 20,000 animals between 1925 and 1950. The number decreased during the 1950s and 1960s, reaching a low of 7,868 animals in 1969. The total number of dairy cows (excluding calves) reached 89,575 by 2007 (WSDA 2013).

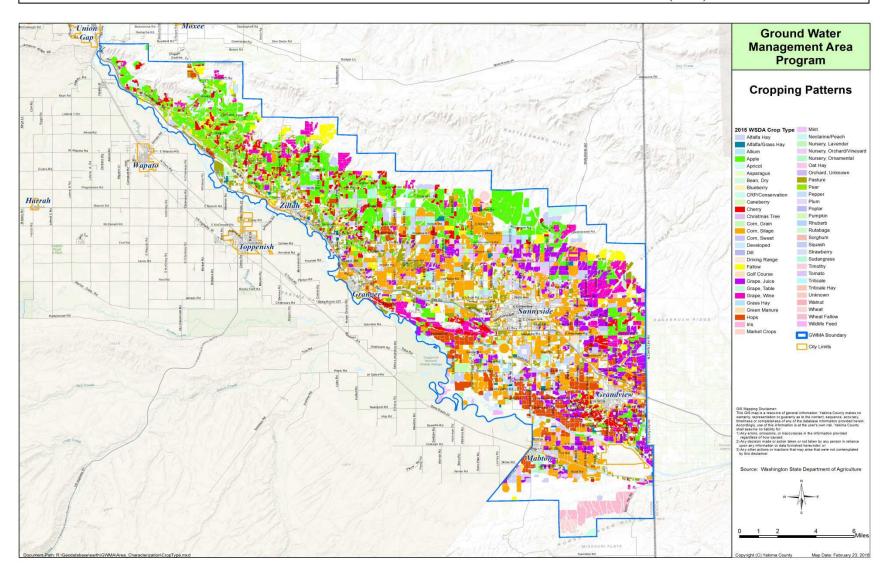

| Yakima County LivestockAs Reported by USDA Census (numbers rounded) (WSDA 2013) |      |                             |      |      |  |  |  |  |  |
|---------------------------------------------------------------------------------|------|-----------------------------|------|------|--|--|--|--|--|
|                                                                                 | Num  | Number of Livestock (x1000) |      |      |  |  |  |  |  |
|                                                                                 | 1935 | 1959                        | 1982 | 2007 |  |  |  |  |  |
| Cattle and calves                                                               | 51   | 135                         | 152  | 213  |  |  |  |  |  |
| Dairy Cows                                                                      | 20   | 18                          | 19   | 90   |  |  |  |  |  |
| Chickens                                                                        | 220  | 240                         | 520  | 300  |  |  |  |  |  |
| Sheep                                                                           | 100  | 75                          | 25   | 10   |  |  |  |  |  |

 TABLE 7 - AGRICULTURAL CENSUS - LIVESTOCK

Trends in U.S. farming began shifting after World War II from mixed crop and livestock operations to specialized monocultures. Livestock became commonly raised separately on feedlots. Crop rotation decreased. Livestock manure, commercial fertilizer, and pesticides became more greatly available. Yields of corn, wheat, and rice increased during the latter half of the Twentieth Century due to large-scale mechanization of tilling, planting and harvesting, improved plant varieties, development of irrigation infrastructure, availability of low cost fertilizers and pesticides, and favorable commodity prices. Economies of scale led farm sizes to increase. By 2007, there were 3,540 farms, making up 1,649,281 acres, in Yakima County (WSDA 2013).

The Washington State Department of Agriculture maintains an annual inventory of crops grown on particular properties. The inventory is maintained in a Geographic Information System (GIS) format. Figure 15 illustrates the variety and location of crops grown within the LYVGWMA in 2015.

A more defined inventory, within the LYVGWMA was conducted by the Washington State Department of Agriculture (Figure 15). In 2015, the crops constituting one percent or more of the acreage within the GWMA are shown on Figure 15.



## FIGURE 15 - LOCATIONS OF CROPS GROWN WITHIN THE LYVGWMA (2015)

|                   |        | % Of  |
|-------------------|--------|-------|
|                   |        | Total |
| Top 20 Crop Types | Acres  | Acres |
| Apple             | 17,351 | 18%   |
| Corn Silage       | 16,826 | 17%   |
| Grape, Juice      | 10,269 | 11%   |
| Alfalfa Hay       | 7,977  | 8%    |
| Pasture           | 6,702  | 7%    |
| Cherry            | 6,361  | 7%    |
| Hops              | 5,922  | 6%    |
| Grape, Wine       | 5,129  | 5%    |
| Fallow            | 4,791  | 5%    |
| Pear              | 3,335  | 3%    |
| Wheat Fallow      | 1,761  | 2%    |
| Sudangrass        | 1,623  | 2%    |
| Mint              | 1,414  | 1%    |
| Wheat             | 1,283  | 1%    |
| Corn, Grain       | 1,148  | 1%    |
| Grass Hay         | 1,133  | 1%    |
| Developed         | 1,019  | 1%    |
| Asparagus         | 853    | 1%    |
| Nectarine/Peach   | 843    | 1%    |
| Alfalfa/Grass Hay | 648    | 1%    |
| Total Acreage     | 96,459 |       |

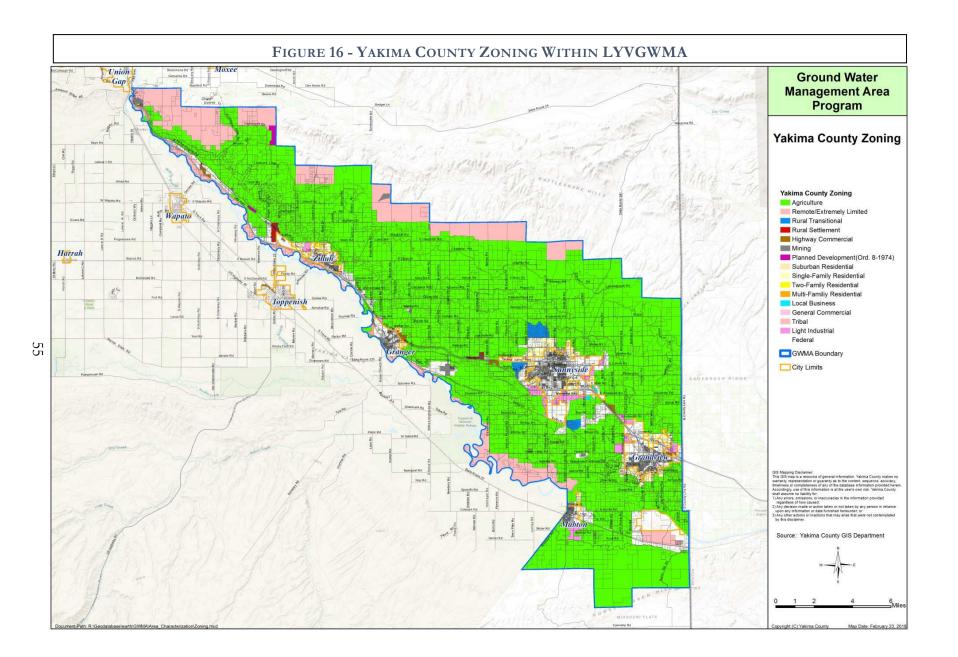
# Table 8 - WSDA 2015 Crop InventoryWithin LYVGWMA

The acreage totals in Table 8 do not account for multiple cropping of any particular acreage in a single year. According to WSDA, 10,780 acres of triticale were farmed ("double-cropped"), primarily on the same ground as corn silage, after the corn silage had been harvested. Double cropping was taken into account however in the WSDA's Nitrogen availability assessment (WSDA 2018).

## Fertilizers

According to the USDOC Agricultural Census, as reported in the Agricultural History of Yakima County (WSDA 2013); 136,553 farmed acres were fertilized in Yakima County in 1954. In 1964; 203,062 farmed acres were fertilized. The number of fertilized acres remained at about that rate through 2007. In 2002, 28,152 acres were fertilized by manure. In 2007; 27,742 acres were fertilized by manure, or approximately 14 percent of total fertilized acres within the county.

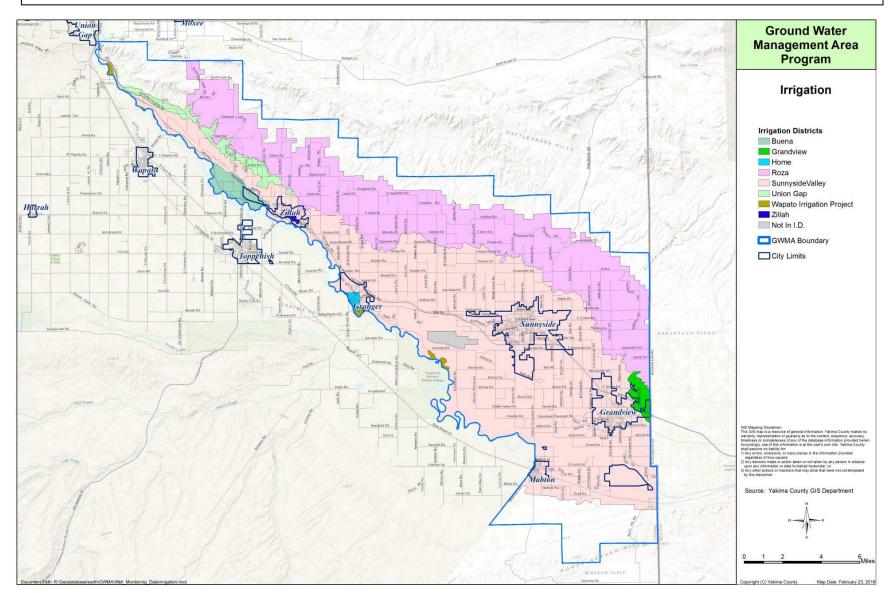
The USDOC Agricultural Census also collected information, between 1954 and 1974, about the number of acres within Yakima County that were fertilized with chemical fertilizer. The maximum number of acres fertilized with chemical fertilizer occurred in 1970, when approximately 110,000 acres received chemical fertilizer (WSDA 2013).


The use of synthetic (commercial) fertilizers began to increase between 1900 and 1944. After WWI, the use of chemical pesticides increased as well. WSDA's 2018 interview of commodity-specific experts to obtain a typical range of use rates for manure, compost, and commercial fertilizer for each of the GWMA's 15 top commodities (WSDA 2018) indicated that 19 percent of total GWMA irrigated acreage was fertilized by manure, 74 percent by commercial fertilizer, and 8 percent by compost.

|                   |         | Commer-  | Acres of  | Manure | Acres of | Compost | Acres of |
|-------------------|---------|----------|-----------|--------|----------|---------|----------|
|                   | Area    | cial N % | Commercia | N % of | Manure   | N % of  | Compost  |
| Crop              | (acres) | of load  | IN        | load   | Ν        | load    | Ν        |
| Apple             | 17333   | 86.3%    | 14958     | 0.0%   | 0        | 13.7%   | 2375     |
| Corn (silage)     | 16778   | 49.6%    | 8322      | 53.9%  | 9043     | 0.0%    | 0        |
| Triticale         | 10780   | 27.2%    | 2932      | 74.8%  | 8063     | 0.8%    | 86       |
| Grape (juice)     | 10257   | 91.0%    | 9334      | 0.0%   | 0        | 11.6%   | 1190     |
| Alfalfa           | 7989    | 91.8%    | 7334      | 8.2%   | 655      | 0.0%    | 0        |
| Pasture           | 6731    | 97.2%    | 6543      | 2.8%   | 188      | 0.0%    | 0        |
| Cherry            | 6336    | 80.5%    | 5100      | 0.0%   | 0        | 19.5%   | 1236     |
| Hops              | 5961    | 97.3%    | 5800      | 2.7%   | 161      | 16.0%   | 954      |
| Grape (wine)      | 5126    | 100.0%   | 5126      | 0.0%   | 0        | 20.0%   | 1025     |
| Pear              | 3331    | 76.6%    | 2552      | 0.0%   | 0        | 23.4%   | 779      |
| Mint              | 1418    | 100.0%   | 1418      | 0.0%   | 0        | 0.0%    | 0        |
| Wheat             | 1283    | 93.9%    | 1205      | 22.4%  | 287      | 0.0%    | 0        |
| Corn (grain)      | 1166    | 71.3%    | 831       | 62.6%  | 730      | 0.0%    | 0        |
| Asparagus         | 854     | 100.0%   | 854       | 0.0%   | 0        | 0.0%    | 0        |
| Peach/Nectarine   | 843     | 81.0%    | 683       | 0.0%   | 0        | 19.0%   | 160      |
| Total             |         |          | 72992     |        | 19129    |         | 7805     |
| Per cent of total |         |          | 0.73      |        | 0.19     |         | 0.08     |

 TABLE 9 - PERCENTAGE DISTRIBUTION OF COMMERCIAL, MANURE, AND COMPOST FERTILIZER

 (WSDA 2018)


Land use within the LYVGWMA is subject to the Yakima County Code. Most of the land within the GWMA is within the Agricultural Zone. Figure 16 illustrates Yakima County zoning districts within the LYVGWMA.



#### Water Use

The Lower Yakima Valley, south of Union Gap, is semi-arid with a mean annual precipitation of 6.8 inches. Precipitation and snowpack in the Cascade Mountains provide the source water and natural storage capacity for the Yakima River and the primary irrigation supply. Diversions from the river are managed by the U.S. Bureau of Reclamation (USBR). Irrigation water can also be drawn from wells pursuant to individual water rights recognized by the Washington State Department of Ecology. Under the Washington State Groundwater code (RCW 90.44.050), prospective groundwater users must obtain authorization of a water right for irrigation (other than that exempted by the statute). Post-1945 well-drilling technologies, legal rulings, and the onset of a multi-year dry period in 1977 stimulated the drilling of numerous irrigation wells. Population growth in the basin has also resulted in increased drilling of shallow domestic wells in addition to deeper public-supply wells. There are now more than 20,000 wells in the basin, more than 70 percent of which are shallow, 10-250 ft deep, domestic wells. The Department of Ecology's online waterrights database indicates that there are 2,874 active groundwater rights associated with wells in the Yakima basin. They collectively withdraw about 529,231 acre-ft during dry years. The irrigation rights are for the irrigation of about 129,570 acres. There are about 16,600 groundwater claims in the basin, for some 270,000 acre-ft of groundwater (USGS 2011). The more limited numbers of groundwater irrigation rights and acreage watered by groundwater specifically within the LYVGWMA has not been determined.

The three largest irrigation providers in the lower valley are the Wapato Irrigation Project, Sunnyside Valley Irrigation District, and the Roza Irrigation District. Wapato Irrigation Project serves irrigators within the Yakama Indian Reservation and is managed by the U.S. Bureau of Indian Affairs on behalf of the U.S. Bureau of Reclamation. In 2012, the Sunnyside Valley Irrigation District (SVID) served 94,614 acres on the valley floor and lower slopes. SVID diverts its water near Parker into a 60-mile canal running generally northwest to southeast through the GWMA, in essentially the same direction of groundwater flow. The SVID's primary canal and delivery laterals are unlined. The Roza Irrigation District (RID) serves 72,491 acres, some of which are not within the LYVGWMA, at higher elevations. Those within the LYVGWMA are on the north slopes of the valley (WSDA 2013). The RID diverts its water from the Yakima River upstream of the City of Selah into a 94.8-mile canal. Its primary canal is lined and its delivery laterals are for the most part contained. The waste ways in both the SVID's and RID's irrigation systems are unlined. Diverse crops are grown in both the SVID and RID service areas. Generally, forage crops dominate the SVID and tree fruits dominate the RID. Both canals end, returning tail water to the Yakima River, near Benton City. From the canals, water is delivered through 709 miles of laterals to over 5,300 individual deliveries. Diversions usually begin in March to prime the canal system and cease in mid-October. On-farm deliveries typically begin in early April. Figure 17 shows the service areas of the SVID and RID within the LYVGWMA.



## FIGURE 17 - SUNNYSIDE VALLEY AND ROZA IRRIGATION DISTRICTS WITHIN THE LYVGWMA

## Irrigation Methods

Irrigation in the Yakima River Basin is accomplished using one of three methods: rill, sprinkler, or drip. Rill (or gravity) irrigation is the oldest and simplest form in use. In its simplest form, an open channel (head ditch) delivers water to the high point of a field. Water is siphoned out of the head ditch and into small furrows cut into the field between each crop row. Water exits the furrows at the low point of the field, and is collected in a second open channel (tail ditch). This water may be reused by pumping back to the head ditch, sometimes repeatedly. The tailwater in the tail ditch may then be routed to a drain that feeds into the regional drainage network. On many rill-irrigated fields, the open head ditch has been replaced with PVC pipe. Instead of siphon tubes, manually operated spigots or sliding gates direct irrigation water into the furrows.

A variety of sprinkler systems are used throughout the Yakima River Basin, and each system varies in its efficiency of delivering water. Portable solid set, wheel lines, and big guns are examples of simple systems to operate, but typically do not provide a uniform coverage of water to a field. They also require manual labor to move from place to place in a field. Fixed solid set, center pivots, and liners are more expensive to install and more complex to operate, but they provide a more even coverage and give the farmer greater control over the irrigation process. These systems can be fully automated, enabling the farmer to irrigate a large area with less labor. The most sophisticated systems use feedback from soil-moisture probes to cycle the irrigation system off and on (USGS 2004).

Drip irrigation employs plastic lines with small openings to deliver water directly to the base of the plant. The drip lines may be installed above or below the soil. A properly operating drip-irrigation system enables a farmer to make maximum use of his allotment of water—very little water is lost to evaporation, no tailwater is generated, and virtually no water is lost to the groundwater system. Drip systems also enable the farmer to deliver nutrients and some pesticides through the lines, significantly reducing the amount of chemicals used on the field and reducing the potential for the chemical to leave the field (USGS 2004).

Sprinkler irrigation systems increased in the Roza and Sunnyside Irrigation Districts between 2005 and 2012, the years in which records are available. Rill (gravity) irrigation

systems have decreased. Sprinkler irrigation in those districts is somewhat lower than it is statewide. Low-flow drip irrigation had increased to 26.16 percent of the acreage in the Roza District by 2010 (WSDA 2013).

## Demographics

## Population

Yakima County is the eighth largest county in state by population, with 244,654 people (USDOC 2010). It is the second largest county in State by land mass: 4,311 square miles. The population within the LYVGWMA was: 56,210, with 19,952 living in a rural area (USDOC 2010).

There are five of cities in the LYVGWMA —Sunnyside, Grandview, Granger, Zillah, and Mabton. Over half of the GWMA's residents live in those cities (USDOC 2010):

- City of Sunnyside-15,858
- City of Grandview-10,862
- City of Granger-3,246
- City of Zillah-2,964
- City of Mabton-2,286

The remaining population resides in an unincorporated area. Most of that remaining population– approximately 19,952 individuals – reside in a rural area not served by public water or sewer. These residents typically rely on a private or shared well for their drinking water. A nearly equal number rely on an on-site sewage system (OSS, or septic system) to dispose of their waste (derived using ARCGIS, a geographic information system, in combination with the 2010 Decennial Census).

In the GWMA, economics and livelihood play a critical role in the decision to live in a rural area instead of an urban one. Affordable housing is a draw to rural areas, and so is the proximity to agricultural-related employment. Farmers, for example, usually live on or near the acreage they farm.

However, other factors are at play in addition to affordable housing and agriculture. In recent decades in Yakima County, large-tract farmsteads have been parceled off and sold in smaller pieces over time. The smaller parcels were not large enough to make a living at farming, but they did offer part-time farming opportunities for people already employed in seeking a country lifestyle. This is perhaps the chief characteristic of "rural" living in Yakima County and the GWMA (Horizon 2040 5.9.4 Rural Lands-Existing Conditions). The desire for a "country" environment in part accounts for the growing number of rural GWMA households— ranging in property size from .5 to 10 acres— whose distance from urban areas preclude them from receiving municipal water or sewer services.

## Income and Poverty

Yakima County's median household income of \$43,506 is below Washington State's median income of \$59,478. The County's per capita income of \$19,433 is also below Washington State's per capita income of \$30,742 (USDOC 2013).

22.6 percent of Yakima County's population was living below the poverty level, an increase of 2.4 percent since 1990. In comparison, only 13.4 percent of all persons in Washington State live below the poverty level (USDOC 2013) (Horizon 2040).

The population of the GWMA is generally poorer than the rest of Yakima County, with over a quarter of the GWMA's population living in poverty. There is also a higher percentage of children in the GWMA living in poverty, which is in line with the larger percentages of children living there.

## Education

The educational disparity between the State, Yakima County, and the GWMA is even greater than the income disparity. In Washington State, for example, 10 percent of the population did not graduate from high school or receive a high school diploma. In Yakima County that rate is almost 3 times higher at 29 percent. Yet in the GWMA it is almost 4 times higher than the state at 39.6 percent. In some GWMA pockets the span is even greater: in the city of Mabton, which lies in the southeast section of the GWMA, 28.1 percent of the population over the age of 25 has less than a ninth-grade education.

## Households and Families

The average household size in the GWMA ranges from 3.36 to 3.98 people per household, larger than the County (3.02 people) and State (2.54 people). Average family size in the GWMA ranges from 3.72 to 4.38 people—again, larger than the average County family size (3.53) or the State (3.11). In the GWMA, 80.2 percent of all households are comprised of families compared to 73.0 percent for the County and 64.5 percent for the State (USDOC 2013).

### Race and Ethnicity

The GWMA has a higher concentration of individuals whose ethnicity is Hispanic/Latino compared to Yakima County, Washington State, or the Nation, and a lower concentration of American Indian/Alaska natives and Blacks/African-Americans (USDOC 2013).

Within Yakima County there is a wide gap between communities for both race and ethnicity. For example, the range for individuals who are Hispanic/Latino ranges from 0.4 percent in the City of Naches to 96.1 percent in the City of Mabton. Additionally, the range of individuals who are American Indian/Alaskan Native ranges from 0.0 percent in the city of Selah to 21.7 percent in the town of Harrah, which is located outside of the GWMA on the Yakama Indian Reservation (USDOC 2013).

The racial groups of Asian, Black or African-American, and native Hawaiian or other Pacific Islander represent a very small part of the population in the GWMA as well as Yakima County when compared to the State and the Nation.

## Language

In Yakima County, 39.6 percent of the population over age 5 speaks a language other than English at home (predominantly Spanish). Additionally, 18.6 percent speak English less than "very well," indicating that the other 21.0 percent are bilingual. In the GWMA, 60.6 percent of the population over age 5 speaks a language other than English at home – 24 percent speak English less than "very well" indicating that the other 36.4 percent are bilingual (USDOC 2013).

# Sources of Nitrate

## Irrigated Agriculture

There are 360,906 acres of crops in Yakima County. Of those acres; 96,459 (27 percent) are located within the GWMA (WSDA 2018). In 2015, irrigated agriculture within the GWMA occupied 55 percent of the total land area within the GWMA boundaries (175,161 acres) (WSDA 2018).

Most crops grown in the GWMA have the potential for positive nitrogen loading under some management practices. WSDA 2015 crop data shows that there is a large and diverse number of crops grown in the GWMA. The top 15 crops by acreage represent 96 percent of the irrigated agricultural land within the GWMA. Each crop has a unique cultivation practice.

Nitrogen from organic matter becomes available for crop uptake as well as losses including leaching below the crop root zone with water.

## **Crops Supporting Livestock Operations**

A significant portion of irrigated agricultural acreage within the GWMA (31,790 acres or 32 percent) is dedicated to crops and land uses (corn, triticale, pasture, and alfalfa) that support dairy or other livestock operations. The majority of manure and compost applications observed by representatives of the WSDA during interviews with farmers and crop consultants were taking place on crops intended for animal feed.

Triticale is normally "double-cropped" (two crops in one growing year (WSDA 2018). Triticale is planted in the fall (September-October) and harvested in the spring (April-May). Silage corn is seeded immediately afterward and harvested in late summer or fall (August-October).

Alfalfa is also planted. Alfalfa is a complex perennial crop. It removes large quantities of nutrients from the soil (PNW). It can meet most of its nitrogen needs from the atmosphere through nitrogen fixation, but is dependent both on the presence of rhizobia bacteria in the soil and on whether or not supplemental nitrogen is added. Alfalfa is considered a "lazy" plant, using nitrogen from other sources such as manure or commercial fertilizer if given the chance. The practice of nitrogen supplementation on alfalfa does occur within the GWMA. However, agricultural practices used for perennial crops like alfalfa and pasture remove the majority of the plant residue from the field during harvest (hay/silage) or through grazing.

During 1998-2003, 29 percent of the irrigated acres in the Granger drainage and 12 percent in the Sulphur drainage were owned by dairies (Crowe) and there were 20, 24, 2, and 0 dairies in Granger, Sulphur, Spring and Snipes drainages, respectively (RSJB 2009).

#### **Tree Fruit and Vegetable Crops**

The primary crops grown in the region are tree fruit, grapes (both juice and wine), hops, wheat, mint, and asparagus. The orchard and vineyard crops, e.g., apples, grapes, cherries, pears, peaches/nectarines are not replanted annually. Rather, they are replanted as appropriate to enhance farming efficiency and anticipate market preference and demand.

#### **Fertilizers**

Fertilizers available within the GWMA include commercial fertilizer, green manure (growing plants that are plowed back into the soil) or compost (made from manure). There is no current measured data regarding the distribution of the amounts of these three nitrogen sources within the GWMA. WSDA interviews with farmers and crop consultants indicate that the most commonly used product is commercial fertilizer. The only exceptions were silage corn and triticale, where more acres were fertilized with manure than with commercial fertilizer. The only crops where growers or crop consultants reported use of all three fertilizer products were hops and triticale.

Fertilizer application timing can affect nitrogen availability for plant uptake and resultant leaching of excess nitrogen. For instance, synthetic fertilizers are formulated to release a specific amount of nutrients at a specific rate over a select period of time. Nitrogen from compost or manure would be released over a much longer period of time at a much lower rate. Crop fertilizers (manure, compost, and synthetic fertilizer) also react differently at the point of application. Compost or manure also contain components with soil health improvement properties.

Generally, crop fertilizer application choices are affected by several parameters including fertilizer type, crop nitrogen needs, application recommendations, expected crop pricing, and anticipated yields. They also may be influenced by recommendations from crop consultants and fertilizer guides, historical practices, and practices of other growers in the community. This variability, in combination with effects of fertilizer types used, irrigation type and practices, and nutrient application timing, soil type and organic matter content, soil nutrient content, manure nutrient content, handling, and storage before application, organic carbon cycling and mineralization, and fertilizer fixing in alfalfa will all affect whether or not any fertilizer application represents a nitrogen loading risk. Alfalfa will resort to fixing nitrogen (i.e., create its own nitrogen by pulling

it out of the air) only if there is insufficient nitrogen already in the soil. If there is sufficient nitrogen in the soil, it will utilize the soil nitrogen first.

High nutrient applications or application of multiple nutrient sources may be used on permanent tree fruit and vegetable crops to improve soil health and maximize fruit production. Producers of crops intended for human consumption may be reluctant to make manure and compost application because of concerns about pathogen transfer, reducing fertilization options (WSDA 2018).

Annual crops such as silage corn, triticale (for silage), and wheat use both commercial nitrogen and manure throughout the GWMA (WSDA 2018). Generally, the nitrogen application for this corn/triticale cropping system is split - one in the fall and one in the spring. Corn (silage and grain) use fairly even amounts of commercial nitrogen and manure on most of the acreage (WSDA 2018).

Fertilizers of any type should be applied only at an "agronomic rate" that is, the rate of application of nutrients to supply crop or plant nutrient needs to achieve realistic yields, while at the same time minimizing the movements of nutrients to surface and groundwaters. Cf. WAC 16-611-010. " 'Agronomic rates' means the application rate (dry weight basis) that will provide the amount of nitrogen or other critical nutrient required for optimum growth of vegetation, and that will not result in the violation of applicable standards or requirements for the protection of ground or surface water as established under chapter <u>90.48</u> RCW, Water pollution control and related rules including chapter <u>173-200</u> WAC, Water quality standards for surface waters of the state of Washington, and chapter <u>173-201A</u> WAC, Water quality standards for surface waters of the state of Washington." WAC .173-350-100. Where the root zone of agricultural crops are within saturated ground, the "agronomic rate" is limited by the groundwater standard.

#### Organic Fertilizers: Cover Crops, Manure and Compost

Cover crops can fix nitrogen within the soil, if plowed into the soil onsite. The variety of cover crop and number of years of integration of cover crops into the soil can affect overall nitrogen concentrations in the soil.

Manure from dairy and livestock operations within the GWMA is a widely-used source of organic fertilizer for irrigated crops within the GWMA. While total volume of manure production can be calculated, as a function of total animals, no public records are currently maintained from which to analyze whether, in gross (minus exportation of such materials), the application of such volume on available irrigated acreage

within the GWMA equates to an agronomic rate in gross. Some pre-application site-specific soil characterization is practiced, so as to accomplish specific site application at an agronomic rate.

Manure contains two primary forms of nitrogen: ammonium and organic nitrogen. Organic nitrogen is nearly immobile. It becomes mobile, and available to crops as fertilizer, through mineralization, the process by which soil microbes decompose organic nitrogen into ammonium. The rate of mineralization varies with soil temperature, soil moisture, and the amount of oxygen in the soil. After mineralization, microorganisms within the soil convert ammonium into nitrate. This process, called nitrification, occurs most rapidly when the soil is warm, moist, and well-aerated.

Livestock wastes contain high concentrations of nitrogen and ammonium, and low concentrations of nitrate relative to inorganic fertilizer. It is difficult to estimate nitrogen loading to soil, air, and water from manure application without sufficient analysis of nitrogen content in these waste streams. These are subject to some nitrogen loss to air and soil under natural conditions.

## Synthetic Fertilizers

There is no public record of the total amount of synthetic fertilizers sold or used within the LYVGWMA. Crop consultants or agronomists, either academic or mercantile (G.S. Long, Co., D & M Chemical, Bleyhl's, Wilbur-Ellis, Simplot, Crop Production Services, Husch and Husch), are used by the majority of commercial farms operating within the GWMA. There are only a few companies that do this type of work. These consultants are not usually farmers. They create prescriptions for pesticide and fertilizer applications across multiple crops on many different farms. Mercantile crop consultants have economic incentives to recommend larger applications of fertilizers. Agronomists without such incentives could review and evaluate such recommendations for farmers.

#### Water Applications

Irrigation practices can affect both amounts and rates of nitrogen leaching and the potential for increased nitrogen concentrations in irrigation return flows (which relocate nitrogen applied through fertilizer).

Irrigation water requirements vary based on crop type. The nitrogen concentration of irrigation water likely resembles that of the Yakima River. The average N concentration of high flow (late spring) and low flow (late summer) conditions of the Yakima River at Kiona during the 2012 irrigation season was 0.809 mg N/L (USGS 2013).

Irrigated agriculture is mapped statewide by WSDA, including the area within the GWMA. There is no current measured data regarding the distribution of the three general irrigation methods (sprinkler, drip, macro/rill) within the GWMA. Interviews with farmers and crop consultants indicate that sprinkler irrigation was used on 61 percent of the total irrigated acreage in the GWMA, drip irrigation (including drip, micro sprinkler, drip/sprinkler, and combinations) was used on 23 percent of the acreage. Macro, or rill, irrigation was used on 15 percent of the acreage (total does not equal 100 percent due to rounding) (WSDA 2018).

Silage corn and triticale cultivation is almost all irrigated with sprinkler or center pivot irrigation systems. Triticale cultivation rarely occurs on rill irrigated fields (Sheehan).

Any improperly decommissioned wells beneath livestock operations, including crop fields onto which waste is applied, could provide a direct conduit for contaminants to reach the groundwater.

# Livestock Operations/CAFOs

#### **Dairy Operations**

USDA's 2012 estimate of dairy operations was 99,532 milk cows on 97 farms (USDA NASS 2014) in Yakima County (WSDA 2018). The majority, or near total of these, are thought to be located within the GWMA. Dairy farms are increasing in size, while the number of farms is decreasing (WSDA 2018).

Manure and other animal wastes supply nutrients to crops because they contain nitrogen and other elements essential to plant growth, and the recycling of animal nutrients to increase soil fertility and crop yield is a historic practice. Manures are recommended over commercial fertilizers where there is a desire to build the soil profile by increasing and diversifying soil organisms, increasing moisture holding capacity, and reducing the need for inputs.

Livestock operations have the potential to release nitrate, chloride, sulfate, and bacteria to surface or groundwater (Harter et al., 2002; Harter et al., 2012). Whether groundwater contamination occurs depends on contaminant characteristics, management practices, meteorological conditions, soil types, geological conditions, and groundwater characteristics (Viers et al., 2012). Contaminant sources can be animal holding areas, manure storage impoundments (either lagoons or settling ponds/basins), and manure applications to cropland (Harter et al., 2002).

The national statistical average of manure production of milk cows (in 2000) was 15.24 tons per animal unit of manure excreted per year. The national statistical average of nitrogen per ton of manure

excreted is 10.69 pounds of nitrogen per ton (Kellog et al., 2000). The formulas used by the EPA to calculate animal manure production, nitrogen production, and losses due to volatilization or denitrification for Holstein cows (EPA 2012, attributable to WSDA) in the Yakima Valley are as follows:

Annual manure production is calculated using the following formula:  $[((\# \text{ of milking cows})*1.4 \ 108) + ((\# \text{ of dry cows})*1.4*51) + 99\# \text{ of heifers})*0.97*56) = ((\# \text{ of calves})I0.33*83)] *365/2000 (WSDA 2010)$ 

Nitrogen production is calculated using the following formula: [((# of milking cows)\*1.4\*.710 = ((# of dry cows)\*1.4\*.3) + ((# of heifers)\* 0.97\*.27)+((# of calves)\*0.33\*.42)]\*365/2000 (WSDA 2010)

Losses due to volatilization or denitrification during storage are estimated at 35 percent. This does not include application losses (WSDA 2010; EPA 2012).

#### Waste Storage Facilities (Lagoons)

Liquid manure stored in lagoons can be a source of nitrate and other contaminants. Contents of lagoons often consist of liquid manure (including urine), rainfall and snowmelt, any other liquid corral runoff, and process water from feeding pens and milking areas. Design, construction and management of lagoons are all very important for the protection of groundwater. In studying dairy, beef, and swine lagoons, researchers found substantial variation in the composition of solids, liquids, and dissolved constituents and leakage rates causing a wide variation in the potential to impact groundwater quality (Ham 2002; Harter et al., 2012a).

The distinction between a lagoon, a settling basin, a settling pond, or a pond is uncertain. Different professionals use different terms for different manure storage impoundments, and different impoundments may be used for different purposes at different times of year. Producers may mix manure and water in additional ponds before land application.

Not all industry experts classify impoundments based on the same criteria and experience. In addition, there are a wide variety of different construction techniques and operational techniques for settling ponds and basins. Some are earthen impoundments that are drained and cleaned as needed. Some ponds are concrete lined, engineered basins.

Lagoon nitrogen concentration depends on farm practices and unit operations on site. Operational differences are often related to whether a dairy uses a flush or scrape system to clean barns, the type of solids separation systems utilized and whether irrigation water is mixed with liquid manure for land application, and potential seasonal effects.

#### **Animal Holding Areas or Corrals**

Animal holding areas or corrals at animal feeding operations are typically unvegetated areas that include pens, freestalls, corrals, and resting and feeding areas. Some areas have extensive concrete and other areas are dominated primarily with a flooring or surface of unlined and compacted soil that can be susceptible to leaching or runoff to contaminant areas. If properly constructed and maintained, concrete floor surfaces can contain wastes and minimize leaching. Corral surfaces become compacted with use and become dense enough to slow down the downward movement of water and pollutants. Manure accumulating on the surface mixes with the soil layer and forms a low-permeability interface layer that further reduces the permeability of corral and pen surfaces (Harter et al., 2012a). Nitrogen loading from corrals and pens at dairy and feedlot facilities is governed by engineered sloping, soil type, dairy or feedlot age, unsaturated zone thickness, stocking rate, rainfall, and evapotranspiration rates. In some situations, increased short-term leaching in corrals may occur due to cracking during seasonal weather events.

#### Pens and Composting Areas

There are 2,632 acres within the GWMA identified by WSDA as pens or composting areas (1,597 acres Dairy CAFO, 499 acres Nondairy CAFO, 536 acres compost) (WSDA 2018). The nitrogen loading rates of pens vary depending upon number and size of stock contained within them and the management of those pens. Nitrogen leaching potential in pens and compost areas is mitigated by low annual precipitation, management of the amount of manures in those pens and compaction of those areas by livestock or equipment. Beef cattle feedlots and dairies have different number of animals per lot. The majority of pens that have been identified as non-dairy CAFOs are most likely dedicated to raising or housing dairy support animals (calves and heifers). However, individual pens may hold calves during one time period and after those animals are moved out, heifers and adult cows may be moved into that same corral or pen.

" 'Composting' means the biological degradation and transformation of organic solid waste under controlled conditions designed to promote aerobic decomposition. Natural decay of organic solid waste under uncontrolled conditions is not composting" WAC 173-350-100. "Composting" may refer to a category of activities rather than a specific practice or technology, may occur in windrows, composting in bags, spreading material out over a concrete pad or large surface area to dry, turning frequency, potential

moisture additions to material that has dried out. Composting reduces the weight of the basic material. Composted waste can be desired by organic growers as a source of additive to soil structure, soil density, nutrient and weed defoliant.

#### **Buildings Housing Animals**

Animals may spend time in freestall barns, milking parlors, or loafing sheds. These facilities are built with concrete floors and are cleaned multiple times a day. Potential leaching from these types of buildings, even anticipating cracks in concrete floors that could provide a pathway to leaching, is much smaller than potential from pens and lagoons.

## Residential, Commercial, Industrial and Municipal Groundwater

Non-agricultural sources of potential contamination of groundwater within the LYVGWMA boundaries include the following:

## Residential Onsite Sewage Systems (ROSS)

Residential Onsite Sewage Systems (OSS) are present throughout the LYVGWMA outside of those areas served by municipal sewage collection and treatment systems. Residential OSS are especially common in and near the urban growth boundaries of many of the valley's municipalities. Non-residential OSS are also scattered throughout the project area serving a variety of public and private entities. The OSS comprise one of the several potential sources contributing nitrate-N to the underlying shallow alluvial groundwater system.

There are 6,044 residential households within the GWMA that discharge wastewater to an onsite sewage system (WSDA 2018). Nitrogen in residential wastewater is mainly generated from human body wastes and food materials from kitchen sinks and dishwashers. The amount of nitrogen present in the wastewater is typically expressed as a concentration in milligrams per liter (mg/L) and/or as a mass loading in grams/person/day.

The highest density of OSS is within and near urban growth areas associated with municipalities. Specifically:

- The highest density of OSS are found on the east and north side of Sunnyside where OSS density ranges from 80 to 100 OSS per section.
- West of Sunnyside near Outlook where OSS density approaches 80 OSS per section.
- In the Zillah to Buena area where density approaches 80 OSS per section.

• Slightly lower OSS density is found south of Grandview, Sunnyside, and Mabton where the OSS range from 50 to 70 per section.

The absence of public water systems in some rural areas where OSS are densely sited, due in part to the date of development of these areas, may cause too-close proximity of septic systems and drinking water wells. Nearby municipalities are constrained in providing new public water service to these denser rural populations by cost and growth limitations imposed by growth management areas established pursuant to the Growth Management Act. Too great a density of ROSS can be a cause of groundwater pollution (EPA 1977) (Swann). In the case of the Buena community within the LYVGWMA, failing septic systems and related contaminated wells caused Yakima County to respond with grant-funded installation of a public water system and a wastewater treatment system utilizing a combined septic/sewer system (Redifer).

The frequency of septic tank pumping in each ROSS in the GWMA is unknown. In a survey conducted by Yakima County, without statistical sampling methodology, 82 percent of 458 surveys collected indicated that they had had their "septic tank pumped recently."

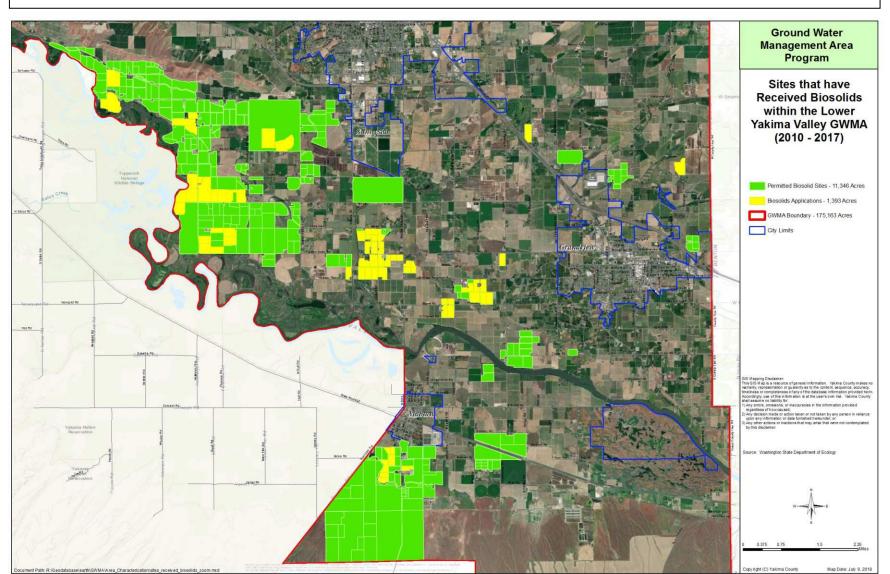
Wastewater discharged to a ROSS is subject to several biological processes including nitrification and denitrification. These processes can take place depending on the environmental conditions and occur most effectively when the soil is unsaturated because the wastewater is forced to percolate over the soil particle surfaces where treatment can take place and air is able to diffuse through the soil. Whether these processes occur and their effectiveness in treatment depends on the physical characteristics of the soil and the environmental conditions of the soil through which the wastewater percolates. Wastewater parameters, such as levels of nitrogen, are removed to varying degrees. Under good conditions (and proper operation and management), organic or ammonia nitrogen is readily and rapidly nitrified biochemically in aerobic soil and some biochemical denitrification can occur in the soil, but without plant uptake, 60 to 90 percent of the nitrate enters the groundwater. Under anaerobic soil conditions, nitrification will not occur, but the positively charged ammonium ion is retained in the soil by absorption onto the soil particles. The ammonium may be held until aerobic soil conditions return allowing nitrification to occur (EPA 2002). Within the GWMA, moderate denitrification occurs about three months a year and poor denitrification occurs about three months (soil saturated and no warmth). These factors determine that the total denitrification average in the GWMA is in the range of 10 to 13 percent.

Conventional ROSS technology relies on primary treatment (settling) for solids and organic reduction prior to dispersion to the ground. Innovative ROSS technologies combine the primary treatment with biological treatment to achieve a higher level of treatment. The biological processes promote the removal of nitrogen from wastewater through the multi-step bacterial conversion of ammonia and organic nitrogen to nitrates (nitrification) and the reduction of nitrates to gaseous nitrogen (denitrification). The optimum nitrogen removal of properly operating conventional ROSS technology is up to 10 to 30 percent (WDOH 2005). Innovative ROSS technology utilizing biological nitrogen removal or introduction of carbon source can increase nitrogen removal (WDOH 2005).

The predominant soil types underlying the ROSS drain fields located within the GWMA are characterized as silt loams that are porous and have a well-developed structure. The estimated depth to groundwater is equal to or greater than 10 feet at approximately 90 percent of the ROSS locations. See Figure 11, Depth to Groundwater. It is reasonable to assume that the environmental conditions underlying the drain fields are conducive to some level of denitrification.

#### Large Onsite Sewer Systems (LOSS)

A LOSS is a septic system serving multiple residences or nonresidential establishments serving twenty or more people per day or having a design volume over 3,500 gallons. Washington State Department of Health records show that there are two LOSS located within the GWMA. One is located outside of Zillah with a design capacity of 5,000 gallons. The second LOSS site is located outside of Granger with a design capacity of 4,850 gallons. Annual reports for LOSS are submitted to the DOH.


### Commercial Onsite Sewer Systems (COSS)

A COSS is a septic system used for employees working at agricultural or other businesses that operate year-round and are not classified as a LOSS by the DOH. The most likely locations of these facilities within the GWMA are wineries, schools, agriculture packing lines, small businesses (stores, fire stations), agricultural business offices and maintenance buildings, churches, and confined animal feeding operations (CAFOs).

#### **Biosolids**

Biosolids are a nutrient rich soil amendment derived from public waste treatment plant septage. Septage is a class of biosolids that comes from septic tanks, treatment works, and similar systems receiving domestic wastes (WAC 173-308-050). Biosolids are produced by treating sewage sludge to meet certain quality standards that allow it to be applied to the land for beneficial use.

Biosolid application rates require advanced approval based on pre-plant soil tests, evaluation of crop type and yield estimates, soil types, and use of irrigation. Intermittent post-harvest tests are also conducted. The single site approved for land application of biosolids within the GWMA is Natural Selection Farms located at 6800 Emerald Road in Sunnyside. Yakima County also receives some biosolids and County landfills.



## FIGURE 18 - BIOSOLIDS APPLICATION SITES

#### **Residential Lawn Fertilizers**

Residential lawns exist primarily within towns or urban growth areas within the GWMA. All residents do not fertilize their lawn regularly. Some do not fertilize their lawns at all. Rough estimates are necessary to evaluate how much nitrogen is applied within the GWMA to residential lawns. Nitrate accumulation in the groundwater is not just a matter of nitrogen application rates but also water application rates and removal of "thatch" (grass clippings generated through mowing). While not everyone fertilizes regularly, overwatering and improper thatch management may occur at municipal properties, including residences, schools and businesses, particularly if mowing or watering is frequent. Both can have an effect on the loading of even a small amount of nitrogen. Higher population density areas can have a higher percentage of lawn area and the associated potential for more fertilization and overwatering that could be a factor in N loading.

#### "Hobby Farms"

The term "hobby farm" is intended to mean a land, which may or may not contain a residence, other than lawns, upon which minimalist agriculture is maintained without the intention of profit. It may contribute nitrogen within the GWMA area. These land uses are on parcels of land less than 10 acres that are not included in the WSDA's crop inventory. Nitrogen contributions on these parcels may come from individual gardens, pastures, pets, and other animals. Co-location of septic drain fields and hobby farming operations, particularly animal farming operations, may cause drain field failure and reduction of denitrification potential.

#### **Underground Injection Wells**

Most UIC's in Yakima County are road based and county-owned, put in place to receive surface water runoff from county roads.

#### Transport (Abandoned Wells)

Abandoned or improperly-constructed wells can be a conduit for nitrogen entering the ground. In Washington State, the construction of groundwater wells was first required to be reported in 1972. Consequently, the Department of Ecology well database includes only those wells constructed after 1972, and those wells identified in information supporting water right claims, permits or certifications predating 1972. A reasonable estimate of wells within Yakima County that are identified in DOE's well database is 45,000. Some portion of that is located within the Groundwater Management Area.

Groundwater wells typically have a life of about 40 years. This is due to: mechanical failure, deterioration of material (primarily steel well casings), settling of casings within ground materials, change in aquifer conditions (mineralization, scale deposits within casing). In most instances, it is cheaper to drill a new well than to repair an old one (Richardson).

Not all wells have the same risk of failure, or if abandoned the same risk to the public health and welfare. Wells differ in design, construction, diameter of casing, depth of casing, depth to water, water chemistry, etc. Wells constructed pursuant to regulatory standards have less risk of failure, even if "abandoned." "Dug wells," those wells constructed by digging a pit in the ground in order to collect water near ground surface, either with or without a small-diameter casing hammered into the ground from the bottom of the pit have the greatest risk of failure and risk to the public health and welfare. In addition to potential groundwater contamination from dug wells, people and animals can fall into these wells (Richardson).

"Vaulted" wells also present a significant risk of groundwater contamination, whether in use or abandoned. A "vaulted" well is essentially a dug well with a concrete reinforcement of the sides, or bottom, of the pit, creating a "vault". Water can collect in vaults which may migrate down the well casement, or along the annulus (the circular void between the well casing and the ground material through which the well was drilled) of the well casing. Wells with casing top elevations at or near ground level (as opposed to raised above ground level), or cut off below ground level, also present risk of groundwater contamination, due to possible "overtopping" of surface contamination into the well casing. Similar risk occurs where the well casing has no cap. Otherwise properly constructed wells may present risk of groundwater contamination if they have not been "sealed." Sealing is accomplished through the infusion of bentonite clay or cement into the casing annulus for a distance sufficient to prevent surface water intrusion into the subsurface (Richardson).

Deeper wells generally have larger diameters than shallower wells. Industrial, public water system, or irrigation wells are more likely to have larger diameter wells than single-user domestic wells. Unused irrigation wells may be less likely to be discovered because of change of land use or crop choice (Richardson).

Abandoned wells or wells that have not been decommissioned are often located by purchasers of property, parties who may become liable upon foreclosure of real estate financing instruments (banks), and reviewing entities (e.g., county planning officials) when reviewing proposals for change of parcel definitions (short plats, site plans for building permits) (Richardson).

Surface water, streams, and wasteways may also be a means of transportation of nitrogen to the ground.

# Atmospheric Deposition

Atmospheric deposition of nitrogen is the process by which aerosol particles collect or deposit themselves on the earth's surfaces. It may be either wet or dry deposition. Nitrogen emissions may come from transportation agriculture, power plants, industrial and natural sources. In agricultural areas emissions from operations involving animals or fertilized cropland. Emissions may travel from very long or very short distances (Viers et al., 2012). Deposition monitoring is conducted by the National Atmospheric Deposition Program. There is one monitoring station in Eastern Washington, in Whitman County (WSDA 2018).

# The Regulatory Environment

The water molecules in the ground beneath the LYVGWMA fall within the regulatory structure of the federal Safe Drinking Water Act and Washington Department of Health regulations (as "drinking water") and Washington's Water Pollution Control Act and Water Resources Act (as "groundwater"). Those molecules' potential contribution to surface water quality makes the federal Clean Water Act and surface-water authorities assigned to the Washington State Department of Ecology by the Water Pollution Control Act also apply.

## Safe Drinking Water Act

The EPA has broad authority, under Section 1421 of the Safe Drinking Water Act, 42 U.S.C. 300g-1(b)(1)(A), (B), to establish national primary drinking water standards, "if the Administrator determines that . . . the contaminant may have an adverse effect on the health of persons;" "is known to occur . . . in public water systems with a frequency and at levels of public health concern;" or there is "a meaningful opportunity for health risk reduction for persons served by public water systems."

For each contaminant that the Administrator determines to regulate under subparagraph (B), the Administrator shall publish maximum contaminant level goals and promulgate, by rule, national primary drinking water regulations under this subsection (42 U.S.C. 300g-1(b)(1)(E)).

EPA sets legal limits on over 90 contaminants in drinking water. The legal limit for a contaminant reflects the level that protects human health and that water systems can achieve using the best available technology. EPA rules also set water testing schedules and methods that water systems must follow. The EPA set the maximum contaminant level for nitrate, nitrite and total nitrate, and nitrite in 40 CFR § 141.62:

| Contaminant           | MCL       |  |  |
|-----------------------|-----------|--|--|
|                       | (mg/l)    |  |  |
| (7) Nitrate           | 10 (as    |  |  |
|                       | Nitrogen) |  |  |
| (8) Nitrite           | 1 (as     |  |  |
|                       | Nitrogen) |  |  |
| (9) Total Nitrate and | 10 (as    |  |  |
| Nitrite               | Nitrogen) |  |  |

EPA may approve states to assume primary enforcement authority under the Safe Drinking Water Act. Washington's drinking water quality standard for nitrate is 10 milligrams per liter (mg/L), or 10 parts per million.

When drinking water in private wells contains or is likely to contain a contaminant that may present an imminent and substantial endangerment, such as nitrate, EPA may take an emergency action under the SDWA, Section 1431. EPA must first determine that the state and local authorities have not taken action to protect the health of such persons. An emergency action pursuant to SDWA Section 1431 may include any order that may be necessary to protect the health of persons, including ordering the collection of samples to investigate the sources of the contamination. In addition, where appropriate, EPA may issue orders to require the provision of alternative water supplies. EPA may also judicially enforce its orders, through action seeking civil penalties for each day of such violation. If violation of EPA's orders is "willful," EPA may seek criminal penalties of fines or imprisonment for not more than three years (42 U.S.C. § 300g-2(b)). Citizens may also seek protection of underground sources of drinking water, under 42 USC 300j-8, so as to mandate EPA regulatory or litigative action.

The EPA may also designate sole source drinking water aquifers under Section 1427 of the Safe Drinking Water Act, 42 U.S.C. 300h.

## State Department of Health

The Washington State Department of Health is authorized to adopt regulations "to protect public health" (RCW 43.20.050(2)). These may include rules for Group A public water systems, as necessary, to

assure safe and reliable public drinking water and to protect the public health. Those rules set requirements regarding: (i) The design and construction of public water system facilities, including proper sizing of pipes and storage for the number and type of customers; (ii) Drinking water quality standards, monitoring requirements, and laboratory certification requirements; (iii) Public water system management and reporting requirements; (iv) Public water system planning and emergency response requirements; (v) Public water system operation and maintenance requirements; (vi) Water quality, reliability, and management of existing but inadequate public water systems; and (vii) Quality standards for the source or supply, or both source and supply, of water for bottled water plants.

The DOH also sets rules for Group B public water systems, as defined in RCW 70.119A.020. These rules establish minimum requirements for the initial design and construction of a public water system and "rules and standards for prevention, control, and abatement of health hazards and nuisances related to the disposal of human and animal excreta and animal remains" (RCW 42.30.050 (2) (b), (c)).

The Department of Health requires that nitrate levels (concentrations) (as N) in Group A public water systems not exceed the maximum contaminant level ("MCL") of 10 mg/L, and that nitrite levels (concentrations) not exceed the MCL of 1 mg/L (WAC 246-290-310(3) (Table 4)). The requirements for Group B public water systems are the same (WAC 246-291-170 (2)(b)). Nitrate and nitrite are "primary inorganic contaminants" and the MCL for nitrate and nitrite are "primary MCLs." When primary MCLs are exceeded by a public water system the water purveyor must "determine the cause of the contamination" and "take action as directed by the Department of Health" (WAC 246-290-320(1)(b)(iii)).

WAC 246-290-300 requires public water systems to sample for many contaminants, including nitrate, on a regular basis. Public water systems with nitrate levels over 10 ppm must notify the people who receive water from them (WAC 246-290-320).

## Clean Water Act

Surface water quality in Washington is regulated by the federal Clean Water Act (33 U.S.C. 1342, et seq.) and Washington's Water Quality Standards for Surface Waters (Chapter 173-201A), which are authorized by the State Water Pollution Control Act (Chapter 90.48).

The Clean Water Act makes it unlawful to discharge any pollutant from a point source into waters of the U.S. unless a National Pollutant Discharge Elimination System (NPDES) permit is obtained (33 U.S.C. 1342). The NPDES permitting authority has been delegated to the Department of Ecology (See 33 U.S.C. 1342 (b);

RCW 90.48.260). The Department exercises this delegated authority, together with its authority under the Water Pollution Control Act, in issuing NPDES permits and State Waste Discharge Permits (SWDPs) (pursuant to WAC 273-226-030). DOE's water quality standards are used to establish effluent limits in NPDES permits and SWDPs.

DOE's water quality standards and SWDPs apply to both point source activities and nonpoint source activities. Point source activities are activities where a source of pollution can be readily distinguished, such as the industrial discharge of waste onto or into the ground. State law requires point sources to operate under permits that set conditions for discharges. These permits may be issued to a specific entity with conditions designed to protect water quality.

A "point source" is "any discernible, confined, and discrete conveyance, including, but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged. This term does not include return flows from irrigated agriculture." (WAC 273-226-030 (21))

"Nonpoint sources" are more diffuse in nature. They often consist of many small pollutant sources that have a cumulative effect, like highway runoff, on-site septic systems in developed areas, and application of pesticides or nutrients in both agricultural and urban areas. Some nonpoint sources are managed through the development of siting and design standards.

Groundwater contamination may affect surface water quality. Under §303(d) of the Clean Water Act, states are required to develop lists of impaired waters. These are waters for which technology-based regulations and other required controls are not stringent enough to meet the water quality standards set by the state. The law requires that states establish priority rankings for waters on the lists and develop Total Maximum Daily Loads (TMDL) for these waters. A TMDL is a calculation of the maximum amount of a pollutant that a water body can receive and still safely meet water quality standards. A TMDL is generally administered by establishing limits on the discharge of pollutant materials otherwise permitted under the NPDES or state regulatory programs.

## Washington's Water Pollution Control Act and Water Resources Act

Groundwater quality in Washington is regulated by the Groundwater Quality Standards (Chapter 173-200 WAC) which are authorized by the state Water Pollution Control Act (Chapter 90.48 RCW) and Water Resources Act (Chapter 90.54 RCW). Discharges to groundwater are regulated through a variety of

permitting mechanisms which are authorized by the Water Pollution Control Act (Chapter 90.48. RCW). These permitting regulations include State Waste Discharge Permits, which may be issued as General Permits.

The Water Pollution Control Act, Chapter 90.48 RCW makes it "unlawful for any person to throw, drain, run, or otherwise discharge into any of the waters of this state, or to cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged into such waters any organic or inorganic matter that shall cause or tend to cause pollution of such waters." (RCW 90.48.080)

The Department of Ecology is the primary agency in Washington State responsible for implementation of this mandate. DOE has adopted Chapter 173-200 WAC, Water Quality Standards for Groundwaters. The standards include "water quality criteria" (numerical limits for specific contaminants that apply to all groundwaters in the state). WAC 173-200-040 (2) (Table 1) establishes that Nitrate concentrations in groundwater may not exceed 10 mg/L.

The standards apply to all groundwaters of the state that occur in a saturated zone (generally at or below the water table) or stratum beneath the surface of land or below a surface water body. The groundwater standards do not apply in the root zone of saturated soils where agricultural pesticides and nutrients have been applied at agronomic rates for agricultural purposes, but only if those contaminants will not cause pollution of groundwaters below the root zone. (WAC 173-200-010(3)(a)) In other words (removing the double negative), the standards do apply in saturated root zones if pollution is caused in groundwaters below.

DOE's water quality standards incorporate an "antidegradation policy," an otherwise existing part of state water quality law (WAC 173-200-030). This policy precludes degradation which would harm existing or future beneficial uses of groundwater (drinking water, irrigation and support of wildlife habitat). DOE has antidegradation implementation procedures that explain what needs to be done for an antidegredation analysis. The standards provide numeric values which must not be exceeded to protect the beneficial use of drinking water.

"General permits" issued by the Department of Ecology (either as a "combined" NPDES and SWDP or as a "state-only" SWDP) may be issued to a group of entities with common discharge characteristics and conditions. (WAC 273-226-020) Permits issued under Chapter 273-226 WAC are designed to satisfy the requirements for discharge permits under Sections 307 and 402(b) of the federal Water Pollution Control Act (33 U.S.C. §1251) and the state law governing water pollution control (Ch. 90.48 RCW). (WAC 273-226-020). If eligible, a point source must obtain general permit coverage before discharging to surface or ground waters or the point source may be found to be in violation of state or federal law for discharging without a permit.

General permits establish standards for management. General permits are issued for fixed terms not exceeding five years from the effective date. Point source facility operators must apply to the DOE for coverage under a general permit. (WAC 227-226) All permittees covered under a general permit must submit a new application for coverage under a general permit or an application for an individual permit at least 90 days prior to the expiration date of the general permit under which the permittee is covered. When a permittee has made timely and sufficient application for the renewal of coverage under a general permit, an expiring general permit remains in effect and enforceable until the application has been denied, a replacement permit has been issued by the DOE, or the expired general permit has been terminated by the DOE. Coverage under an expired general permit for permittees who fail to submit a timely and sufficient application shall expire on the expiration date of the general permit. (WAC 173-226-200)

A general permit may be modified, revoked and reissued, or terminated, during its term if information is obtained by DOE which indicates that cumulative effects on the environment from dischargers covered under the general permit are unacceptable. (WAC 173-226-230 (1)(d)) DOE may require any discharger to apply for and obtain an individual permit, or to apply for and obtain coverage under another more specific general permit. Also, any interested person may petition the DOE to require a discharger authorized by a general permit to apply for and obtain an individual permit. (WAC 173-226-240 (2), (3))

DOE may revoke, or "terminate coverage under" a general permit where terms or conditions of the general permit are violated, conditions change such that either temporary or permanent reduction or elimination of permitted discharges is required, or DOE determines that the permitted activity endangers human health, safety, or the environment, or contributes to water or sediment quality standards violations. (WAC 173-226-240 (1) (a), (c), and (d))

Washington's Water Pollution Control Act authorizes DOE to "bring any appropriate action, in law or equity, including action for injunctive relief . . . as may be necessary to carry out the provisions" of that Act (RCW 90.48.037), including its prohibition of the discharge of organic or inorganic matter that may cause pollution of ground or surface water. (RCW 90.48.080).

Violations of maximum concentrations may be addressed by enforcement "through all legal, equitable, and other methods available to the department including, but not limited to: issuance of state waste discharge permits, other departmental permits, regulatory orders, court actions, review and approval of plans and specifications, evaluation of compliance with all known, available, and reasonable methods of prevention, control, and treatment of a waste prior to discharge, and pursuit of memoranda of understanding between the department and other regulatory agencies." WAC 173-200-100 (3).

If DOE determines that a potential to pollute the groundwater exists, it may request a permit holder or responsible person to prepare and submit a groundwater quality evaluation program for its approval. Each evaluation program must be based on soil and hydrogeologic characteristics and be capable of assessing impacts on groundwater at the "point of compliance." The evaluation program approved by DOE may include (a) groundwater monitoring for a specific activity; (b) groundwater monitoring at selected sites for a group of activities; (c) monitoring of the vadose zone; (d) evaluation and monitoring of effluent quality; (e) evaluation within a treatment process; or (f) evaluation of management practices. WAC 173-200-080 (2). The "point of compliance" is the location where the "enforcement limit," is "measured and shall not be exceeded." WAC 173-200-060 (1). The "enforcement limit" is established in accordance with WAC 173-200-050.

The DOE may also designate a groundwater "special protection areas" if it determines that the groundwater in an area requires "special consideration or increased protection because of one or more unique characteristics." WAC 173-200-090 (1). These unique characteristics are then to be taken into consideration by DOE when regulating activities, developing regulations, guidelines and policies and when prioritizing department resources for groundwater quality protection programs. WAC 173-200-090 (2). Characteristics to guide designation of a special protection area are set forth in the rule. WAC 173-200-090 (2). Designation of special protection areas must be in the public interest. WAC 173-200-090 (5)(b).

## Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act (RCRA) (Pub. L. No. 94-590, 90 Stat 2795, 42 U.S.C. §§6901-6987, 9001-9010) contains both regulatory standards and remedial provisions to achieve goals of conservation, reducing waste disposal, and minimizing the present and future threat to human health and the environment. RCRA provides a comprehensive national regulatory structure for the management of nonhazardous solid wastes (subtitle D, 42 U.S.C. §§ 6941/y-6949a) and hazardous solid wastes (subtitle C, 42 U.S.C. §§ 6921/y-6939b). "Solid waste" is defined as "any garbage, refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including

solid, liquid, semisolid, or contained gaseous material resulting from industrial, commercial, mining, and agricultural operations, and from community activities . . . ." 42 U.S.C. §6903(27)

Materials are discarded if they are either abandoned or recycled or are inherently waste-like. 40 C.F.R. § 261.2. Materials are "disposed" if they are discharged, deposited, injected, dumped, spilled, leaked or otherwise placed into or on land or water such that it may enter into the environment or be emitted into the air or discharged into any waters, including groundwaters 42 U.S.C. §6903(3). Agricultural wastes, including manures, crop residues, or commercial chemical fertilizers applied to the soil in amounts greater than can be used as fertilizers or soil conditioners may be the disposal of solid waste.

# Washington's Right to Farm Law

Washington State's right to farm law, RCW 7.48.300-320, was first enacted in 1979, with the purpose of protecting agricultural activities conducted on farm and forest lands from lawsuits sounding in nuisance. As a consequence, "agricultural activities conducted on farmland and forest practices, if consistent with good agricultural and forest practices and established prior to surrounding nonagricultural and nonforestry activities, are presumed to be reasonable and shall not be found to constitute a nuisance." RCW 7.48.305 (1. The defense does not apply however if "the activity or practice has a substantial adverse effect on public health and safety." "Agricultural activities and forest practices undertaken in conformity with all applicable laws and rules are presumed to be good agricultural and forest practices not adversely affecting the public health and safety." RCW 7.48.305 (2). The Yakima County Code protects the right to farm in similar terms to the state statute. Ch. 6.22, YCC.

In 2005, Washington's right to farm law was amended to provide for full recovery of costs of litigation in the defense of nuisance suits where the right to farm law was a successful defense. RCW 7.48.315.

## Interagency Cooperation

DOE and WSDA signed a Memorandum of Understanding (MOU) in 2003 to guide coordination and cooperation between the two agencies for dairies, CAFOs and other animal feeding operations. A key element of the MOU is that WSDA inspectors must provide field inspections and technical assistance to DOE for CAFO and other AFO related water quality activities. The two agencies continue to coordinate on livestock and manure related complaints and in implementing the CAFO permit. An updated MOU was signed in 2011. The MOU can be found at http://agr.wa.gov/FP/Pubs/docs/MOUAgricultureEcology2011Final.pdf Under the MOU, DOE is responsible to EPA for Clean Water Act compliance for AFOs and CAFOs. DOE maintains authority under Ch. 90.48 RCW to take compliance actions on any livestock operations where human health or environmental damage has or may occur due to potential or actual discharges, for pasture or rangeland based operations, for manure spreading operations when it is determined the manure was not applied by a dairy, for non-dairy AFOs, CAFOs and permitted CAFOs, and ultimately for permitted dairies. Where compliance actions are against non-permitted dairies, DOE recognizes WSDA as lead. Where DOE is involved in investigations and compliance actions against non-permitted dairies, DOE will discuss the compliance actions with WSDA to ensure that timely compliance actions are sufficient to protect human health and the environment. DOE is responsible for the approval of best management practices used to show compliance with water quality standards. DOE must provide available monitoring data and trend analysis for livestock related pollutants to WSDA upon request. DOE's TMDL process must involve WSDA as a stakeholder if livestock issues are anticipated.

The DOE/WSDA MOU requires that both agencies provide the other all livestock related records that either may possess as necessary to fulfill state and federal requirements for livestock under the Clean Water Act (MOU  $\P$  C.2), and that the two agencies will coordinate in response to public disclosure requests for AFOs, CAFOs and dairies. (MOU  $\P$  C.4)

WSDA is responsible for implementing Ch. 90.64 RCW and is required to follow Ch. 43.05 RCW. WSDA is responsible for inspections and may initiate compliance actions on permitted dairies, but must notify DOE if there is a discharge to waters of the state and provide a Recommendation for Enforcement. WSDA is responsible for inspections, complaint response and warning letters for all nondairy permitted CAFOs. DOE is responsible for complaint response for non-dairy AFOs and CAFOs but WSDA may respond for initial complaint response if resources are available and may write warning letters. WSDA must coordinate, but seldom becomes involved with DOE when compliance actions beyond warning letters are necessary for non-dairy AFOs and CAFOs or permitted CAFOs. WSDA must enter complaint inspections and warning letters on non-permitted AFOs and CAFOs into DOE's PARIS database.

NRCS offers voluntary financial and technical assistance programs to eligible landowners and agricultural producers to help them manage natural resources in a sustainable manner. Those under contract with NRCS to participate in voluntary programs must adhere to relevant standards for funded projects. Current financial assistance programs in Washington State include:

- Agricultural Management Assistance (AMA): helps agricultural producers use conservation to manage risk and solve natural resource issues through natural resources conservation.
- Conservation Stewardship Program (CSP): helps agricultural producers maintain and improve their existing conservation systems and adopt additional conservation activities to address priority resources concerns.
- Environmental Quality Incentives Program (EQIP): provides financial and technical assistance to agricultural producers in order to address natural resource concerns and deliver environmental benefits such as improved water and air quality, conserved ground and surface water, reduced soil erosion and sedimentation or improved or created wildlife habitat.

## **Regulations Pertaining to Particular Sources**

#### **Crops Supporting Livestock Operations**

WSDA's regulations implementing the Dairy Nutrient Management Act, Ch. 16-611 WAC, require dairy producers to maintain records to demonstrate that applications of nutrients to crop land are within acceptable agronomic rates. Soil analysis should include annual postharvest soil nitrate nitrogen analysis; triennial soil analysis that includes organic matter; pH, ammonium nitrogen; phosphorus, potassium; and electrical conductivity. Nutrient analysis is required for all sources of organic and inorganic nutrients including, but not limited to, manure and commercial fertilizer supplied for crop uptake. Manure and other organic sources of nutrients must be analyzed annually for organic nitrogen, ammonia nitrogen, and phosphorus. WSDA conducts on-site inspections of dairies and reviews their records a minimum of every 18 months. Any significant operational change requires an updated dairy nutrient management plan. Dairies are subject to complaint inspections by WSDA, DOE and EPA at all times." There is no equivalent requirement for non-dairy agricultural producers.

Nutrient application records should include field identification and year of application, crop grown in each field where the application occurred, crop nutrient needs based on expected crop yield, nutrient sources available from residual soil nitrogen including contributions from soil organic matter, previous legume crop, and previous organic nutrients applied, date of applications, method of application, nutrient sources, nutrient analysis, amount of nitrogen and phosphorus applied and available for each source, total amount of nitrogen and phosphorus applied to each field each year; and the weather conditions twenty-four hours prior to and at time of application. (WAC 16-611-020 (2))

#### **Tree Fruit and Vegetable Crops**

There are no groundwater-specific regulations specifically addressing production of tree fruit and vegetable crops

#### **Fertilizers**

Bulk commercial fertilizer distributors are required by RCW 15.54.275 to be licensed. They are also required by RCW 15.54.362 to report the number of net tons of fertilizer distributed within the state during six-month periods (January to June, July to December) (annual report permitted if less than 100 tons). 220,909 tons (200,406,000 kg) of commercial fertilizer was purchased in Washington State in 2011. As the statute does not require that the report be subdivided by county, region or groundwater management area, there is no specific information with which to evaluate the amount of commercial fertilizer sold within the GWMA. "Bulk fertilizer" is commercial fertilizer distributed in a nonpackage form such as tote bags, tanks, trailers, spreader trucks, and railcars. Fertilizers are required to meet the nutrient value guaranteed by the fertilizer manufacturer. There is no requirement that agricultural producers be licensed to apply commercial or any other fertilizer. Unmanipulated animal and vegetable manures, organic waste-derived materials and biosolids are not commercial fertilizer. WAC 16-200-701.

Regulations pertaining to "chemigation" (Ch. 16-202 WAC) do not pertain to "fertigation," the application of chemical fertilizer through irrigation water delivery systems. "Chemigation" is the application of any substance a pesticide, plant or crop protectant, or system maintenance compound applied with irrigation water. WAC 16-202-1002 (17). All pesticide laws apply to chemigation. Pesticides cannot be applied with an open surface, gravity irrigation system unless allowed by the product label.

The Director of the Department of Agriculture may adopt regulations for the appropriate use and disposal of commercial fertilizers for the protection of groundwater. RCW 15.54.800. Although "deep percolation" ("the movement of water downward through the soil profile below a plant's effective rooting zone") is defined by WSDA regulations, WAC 16-202-1002 (23), the regulations do not specifically prohibit deep percolation.

There are no federal, state or local regulations specifically pertaining to the application of nitrogenbased fertilizer to agricultural crops, so long as they are applied at an agronomic rate so long as it does not pollute groundwaters below the root zone. WAC 173-200 100-(3) Manure applied as fertilizer is a "dairy nutrient" under Washington State's Dairy Nutrient Management Act. Ch. 90.64 RCW "Dairy nutrient" means any organic waste produced by dairy cows or a dairy farm operation." RCW 90.64.010 (11). The 2017 CAFO general permit specifically requires that application of nitrogen-based fertilizers not pollute the groundwater.

#### **Livestock Operations**

Washington's Dairy Nutrient Management Act (DNMA) (Ch. 90.64 RCW) authorizes WSDA to "determine if a dairy-related water quality problem requires immediate corrective action under the Washington state water pollution control laws, chapter 90.48 RCW, or the Washington state water quality standards adopted under chapter 90.48 RCW." (RCW 90.64.050 (1)(d)). and to "help maintain a healthy agricultural business climate." Dairies that are licensed to sell Grade A milk and who generate large quantities of animal waste that can pollute surface water and ground water must have an "approved" Nutrient Management Plan (DNMP) on site within six months after licensing. DNMP's must be implemented within two years after licensing. (RCW 90.64.026 (7)) The purpose of such plan is to prevent the discharge of livestock nutrients to surface and ground waters of the state.

The DNMA authorizes local conservation districts to "provide technical assistance to dairy producers in developing and implementing a dairy nutrient management plan;" and to "review, approve, and certify dairy nutrient management plans that meet the minimum standards." (RCW 90.64.070 (1)(d),(e)) An employee of the South Yakima Conservation District often writes the DNMP. "Approved" means the local conservation district has determined that the facility's plan to manage nutrients meets all the elements identified on a checklist established by the Washington Conservation Commission. Certified means the local conservation district has determined all plan elements are in place and implemented as described in the plan. To be certified, both the dairy operator and an authorized representative of the local conservation district must sign the plan. Dairies whose NPDES permits require dairy nutrient management plans need not be otherwise "certified." "Farm Plans," developed and approved by local conservation districts for farmers, must include "livestock nutrient management measures." RCW 89.08.560. Local conservation districts also provide dairies with technical assistance and planning services with which to implement nutrient management plans.

Local Conservation Districts are authorized to provide dairies and other farms with technical assistance and planning services (RCW 89.08.560) and are required to approve and certify all NMPs. "Farm Plans" developed by conservation districts for farmers must include "livestock nutrient management measures." RCW 89.08.560 The South Yakima Conservation District (SYCD) often writes the NMPs for dairy farms and later certifies them.

The primary goal of an NMP is to protect water quality from dairy nutrient discharges. The required elements of an NMP specified by the State Conservation Commission include the collection, storage, transfer and application of manure, waste feed and litter, and any potentially contaminated runoff at the site. Plans should focus on management of nitrogen, and phosphorus as well as preventing bacteria and other pollutants, such as sediment, from reaching surface or ground water. Excess nutrients must be exported off site.

The elements of a dairy nutrient management plan may include methods and technologies of the nature prescribed by the Natural Resources Conservation Service, a department of the U.S. Department of Agriculture RCW 90.64.026(3).

Nutrient management plans are required to be maintained on the farm for review by WSDA inspectors. The DNMA requires that all dairies be inspected for implementation of their nutrient management plans and to ensure protection of waters of the state. Most dairies keep their NMP and associated sampling data on location.

WSDA's regulations implementing the DNMA are published at chapter 16-611 WAC. WAC 16-611-010 defines "agronomic rate" as "the application of nutrients to supply crop or plant nutrient needs to achieve realistic yields and minimize the movements of nutrients to surface and ground waters." The same section defines "Nutrient" as "any product or combination of products used to supply crops with plant nutrients including, but not limited to, manure or commercial fertilizer." The phrase "transfer of manure" is defined as "the transfer of manure, litter or process waste water to other persons when the receiving facility is in direct control of application acreage, rate or time, and transfer rate and time.

Dairy producers must maintain records to demonstrate that applications of nutrients to crop land are within acceptable agronomic rates. Those records should demonstrate that applications of nutrients to the land were within acceptable agronomic rates. Soil analysis should include annual postharvest soil nitrate nitrogen analysis; triennial soil analysis that includes organic matter; pH, ammonium nitrogen; phosphorus, potassium; and electrical conductivity. Nutrient analysis is required for all sources of organic and inorganic nutrients including, but not limited to, manure and commercial fertilizer supplied for crop uptake. Manure and other organic sources of nutrients must be analyzed annually for organic nitrogen, ammonia nitrogen, and phosphorus.

The Dairy Nutrient Management Act requires that manure application and transfer records, including imports or exports, be maintained by dairies that transfer ownership of manure to others. Nutrient application records should include field identification and year of application, crop grown in each field where the application occurred, crop nutrient needs based on expected crop yield, nutrient sources available from residual soil nitrogen including contributions from soil organic matter, previous legume crop, and previous organic nutrients applied, date of applications, method of application, nutrient sources, nutrient analysis, amount of nitrogen and phosphorus applied and available for each source, total amount of nitrogen and phosphorus applied to each field each year; and the weather conditions twenty-four hours prior to and at time of application. Manure transfer records, including imports or exports should include date of manure transfer, amount of nutrients transferred, the name of the person supplying and receiving the nutrients, and a nutrient analysis of manure transferred. Irrigation water management records should include field identification and the total amount of irrigation water applied to each field each year.

The elements of a NMP must include methods and technologies of the nature prescribed by the Natural Resources Conservation Service (NRCS), a department of the U.S. Department of Agriculture. RCW 90.64.026(3). NRCS provides technical assistance to farmers and other private landowners and managers. NRCS has six mission goals: high quality, productive soils, clean and abundant water, healthy plant and animal communities, clean air, an adequate energy supply, and working farms and ranchlands.

NRCS helps landowners develop conservation plans and provides advice on the design, layout, construction, management, operation, maintenance, and evaluation of recommended, voluntary conservation practices. NRCS activities include farmland protection, upstream flood prevention, emergency watershed protection, urban conservation, and local community projects designed to improve social, economic, and environmental conditions. NRCS conducts soil surveys, conservation needs assessments, and the National Resources Inventory to provide a basis for resource conservation planning activities.

NRCS conservation practice standards contain information on why and where the practice is applied, and sets forth the minimum quality criteria that must be met during the use of that practice. State conservation practice standards are available through the Field Office Technical Guide (FOTG). NRCS believes that nutrient management for the protection of groundwater, although different on each farm, is best accomplished through best management practices beginning with those stated in Standards 590, 449 and 313.

Ch. 90.64 RCW does not require that the best management practices recommended by the NRCS be followed, but allows the use of "alternative methods and standards and specifications" of the NRCS. RCW 90.64.016 (3). Nutrient Management Plans are required to be maintained on the farm for review by inspectors. The DNMA requires that all dairies be inspected for implementation of their Nutrient

Management Plans and to ensure protection of waters of the state. Most dairies keep their NMP and associated sampling data on location.

The DNMA does not authorize the WSDA to compel nutrient management consistent with NMPs. Representatives of the WSDA state that most "enforcement" is accomplished through the "soft enforcement" effo4ts that the Department accomplishes through its administrative activities (visitation and advice) under its Dairy Nutrient Management Program. (Prest)

Although "farm plans" are not subject to disclosure under Washington's public records law, (RCW 42.56.270 (17)), plans, records, and reports obtained by state and local agencies from dairies, animal feeding operations, and concentrated animal feeding operations not required to apply for a NPDES permit are disclosable under Washington's public records law (Ch. 42.56 RCW), but only in ranges that provide meaningful information to the public while ensuring confidentiality of business information regarding: (1) number of animals; (2) volume of livestock nutrients generated; (3) number of acres covered by the plan or used for land application of livestock nutrients; (4) livestock nutrients transferred to other persons; and (5) crop yields. The ranges of the information required to be disclosed by the public disclosure law (Ch. 42.56 RCW) are set forth in the WSDA's rules implementing that law and Ch. 90.64 RCW, WAC 16-06-210 (29).

The WSDA's mission under the DNMA is to "protect water quality from livestock nutrient discharges" and to "help maintain a healthy agricultural business climate." The WSDA encourages compliance by providing technical assistance as a first step as required by RCW 43.05, but when that is not successful the WSDA has authority under both RCW 90.64 and RCW 90.48 and has informal (warning letters and notices of correction) and formal (civil penalties and orders) enforcement tools available.

In 2013-2014, WSDA issued 17 notices of correction, one order, and 11 notices of penalty for discharges of pollutants to surface waters, statewide, as well as 122 warning letters and 27 notices of correction for potential to pollute (including failures in record-keeping). WSDA usually begins with informal enforcement, using warning letters and notices of correction, then proceeding to formal enforcement through civil penalty or administrative order. Most penalties include a settlement process including reduction in penalty, requirements to adopt specific management practices, to abstain from discharge and collection of entire penalty in the event of non-performance.

### **Concentrated Animal Feeding Operations**

The Clean Water Act's regulations (40 CFR, Part 122) define dairies with 700 or more animals and feedlots with 1,000 or more animals as Large Concentrated Animal Feeding Operations (CAFO). Large CAFOs are defined as point sources of water pollution if they can or do discharge to surface waters, becoming subject to the National Pollutant Discharge Elimination System (NPDES) requirement for permit. However, unlike other point sources that have continuous or regular discharges to surface waters, CAFOs are not considered to automatically have a surface water discharge. Consequently, they may be required to obtain an NPDES CAFO permit only if they have a discharge or potential to discharge. The DOE administers the CAFO permit, decides when a facility is required to apply for a permit and is responsible for enforcing the permit.

The Washington Department of Ecology issued two CAFO permits under its general permitting authority (Chapter 173-226 WAC) in January 2017 (effective March 3 2017). (Ecology 2017). (A National Pollutant Discharge Elimination System and State Waste Discharge General Permit for Concentrated Animal Feeding Operations (combined permit) and a State Waste Discharge General Permit (state only). The state and combined permits regulate the discharge of pollutants such as manure, litter, or process wastewater from CAFOs into waters of the state.

The permits conditionally authorizes the permittees to discharge, but only in a manner that does not o cause or contribute to a violation of water quality standards. The permittees are prohibited from discharging manure, litter, feed, process wastewater, other organic by-products, or water that has come into contact with manure, litter, feed process wastewater, or other organic by-products, to surface waters of the state from the production area with a few exceptions.

The permittees must implement measures to address the pollution prevention performance objectives listed in special conditions of the permit. Livestock may not be allowed to come into contact with surface waters or conduits to surface waters. Each calendar year, the permittees must develop a field-specific nutrient budget for each land application field they will control at to which they plan to apply manure, litter, process wastewater, or other organic by-products. (Ecology 2017)

The permittees must have all sources of manure, litter, process wastewater, and other organic byproducts sampled and analyzed prior to land application and at least twice more, spaced evenly throughout the land application season, to account for seasonal variation in nutrient concentration (e.g. dilution due to rainfall or concentration from evaporation). (Ecology 2017) The permittees must land-apply manure, litter, process wastewater, or other organic byproducts in accordance with their yearly field nutrient budgets and at the appropriate rates and times to comply with permit conditions. If the permittees generate more manure, litter, process wastewater, or other organic by-products than the land application fields available to the permittees can appropriately utilize according to their yearly field nutrient budgets, the permittees must find other avenues of appropriately utilizing the excess manure, litter, process wastewater, or other organic by-products (e.g. export, composting). (Ecology 2017)

Lands to which manure, litter, process wastewater, and other organic byproducts have been applied must be sampled in spring and fall. The permittees must manage the application irrigation water so that the amount of water applied from precipitation and irrigation does not exceed the water holding capacity in the top two feet of soil, thereby preventing the downward movement of nitrate.

The permittees must use field discharge management practices on their land-application fields to limit discharge of manure, litter, process wastewater, and other organic by-products to down-gradient surface waters or to conduits to surface or ground water.

The permittees are permitted to "export" manure, i.e., to relinquish control of how the manure is used. When exporting manure, the permittees must provide the most recent manure, litter, process wastewater, or other organic by-product nutrient analysis to the recipient as part of export. The permittees must keep records of its manure exports.

#### Waste Storage Facilities (Lagoons)

Under the 2017 CAFO permit, the permittee must have adequate storage space for the manure, litter, process wastewater, feed, and any other sources of pollutants on-site during the storage period for the area where the CAFO is located. Lagoons and other liquid storage structures built, expanded, or having major refurbishment e.g., complete emptying and re-compaction to restore the earthen liner done after the issuance of this permit must achieve a permeability of  $1 \times 10^{-6}$  cm/s without consideration for manure sealing and there must be a minimum of two feet of vertical separation between the bottom of the lagoon (measured from the outside of the earthen liner) and the water table, including seasonal high water table. Lagoons must be inspected, maintained as to structure and volume, and permanently decommissioned when closed. Existing lagoons are required to be assessed.

## Pens and Composting Areas

Management practices are advisable on the site of dairy CAFO pens, such as maintaining an intact layer between the cattle and the underlying ground to inhibit leaching through the surface of the pen, changes in precipitation and evapotranspiration from season to season, and animal density rates. Particulate matter practices require that the pens maintain a certain percentage of moisture to reduce dust emissions."

#### Water Applications

There are no federal, state or local regulations specifically pertaining to the application of irrigation water to agricultural crops. State water law generally precludes wasting water. RCW 90.03.005. Water may only be used for "beneficial use," the opposite of which is "waste."

## Residential Onsite Sewage Systems (ROSS)

"Septage" is "the mixture of solid wastes, scum, sludge and liquids pumped from within septic tanks, pump chambers, holding tanks and other OSS components." WAC 246-271A-0010 The total nitrogen content of septage generated in the GWMA varies under individual circumstances. An area-wide average is not available.

WAC 246-272A-0270 provides that the owner of an OSS is responsible for its operation, monitoring, maintaining, repairing, altering or expanding an OSS. The owner must also assure that an evaluation of a simple gravity septic system's components happens at least once every three years and that an evaluation of all other systems occurs every year. The solids and scum must be pumped from the septic system by an approved pumper generally every three to five years or whenever necessary (EPA 2002) The septic system must not be covered by structures or impervious material. Surface drainage must be trained away from the septic system. The soil above the drain field should not be compacted by vehicles or livestock. It is advisable to inform prospective buyers about the septic system. Most septic systems are now pumped prior to transfer of title to the property.

The location, design, installation, operation, maintenance, and monitoring of OSS is regulated by Chapter 246-272A WAC. The chapter is intended to coordinate with other statutes and rules for the design of OSS under Chapter 18.210 RCW and Chapter 196-33 WAC.

A local board of health must apply to the state DOH to approve local regulations. They must be at least as stringent as the regulations of the state department WAC 246-272A-0015 (9), (10). Yakima County does not have additional regulations.

Permitting for septic systems is done by the Yakima Health District. That agency is also authorized by WAC 246-272A-0015 (5) to "develop a written plan that will provide guidance to the local jurisdiction

regarding development and management activities for all OSS within the jurisdiction." The elements of the plan are listed in the WAC.

The amount of land necessary for the installation of an onsite sewage (septic) tank varies depending upon soil type. Table X in WAC 246-272A-0320 establishes the minimums. Table V in WAC 246- 272A-0220 describes the soil types. A site is required to meet certain ground absorption parameters, pass a percolation test, in order to qualify for a permit to install a septic system. If the ground does not have a certain absorption rate, it does not qualify for a septic system.

## TABLE 10 - (WAC 246-272A-0320)

## MINIMUM LAND AREA REQUIREMENT

# SINGLE FAMILY RESIDENCE OR UNIT VOLUME OF SEWAGE

| Type of            | Soil Type (defined by WAC 246-272A-0220) |         |         |         |         |         |
|--------------------|------------------------------------------|---------|---------|---------|---------|---------|
| Water Supply       | 1                                        | 2       | 3       | 4       | 5       | 6       |
| Public             | 0.                                       | 12,     | 15,     | 18,     | 20,     | 22,     |
|                    | 5                                        | 500     | 000     | 000     | 000     | 000     |
|                    | 2.<br>5                                  | sq. ft. |
| Individu           | 1.                                       | 1       | 1       | 1       | 2       | 2       |
| al, on<br>each lot | 0<br>2.<br>5                             | acre    | acre    | acre    | acres   | acres   |

## TABLE 11 - (WAC 246-272A-220)

| Soil Type                                     | Soil Textural Classifications                                                                                                                                                                           |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                             | Gravelly and very gravelly coarse sands, all extremely gravelly soils<br>excluding soil types 5 and 6, all soil types with greater than or equal to 90<br>percent rock fragments.                       |
| 2                                             | Coarse sands.                                                                                                                                                                                           |
| 3                                             | Medium sands, loamy coarse sands, loamy medium sands.                                                                                                                                                   |
| 4                                             | Fine sands, loamy fine sands, sandy loams, loams.                                                                                                                                                       |
| 5                                             | Very fine sands, loamy very fine sands; or silt loams, sandy clay loams, clay<br>loams and silty clay loams with a moderate or strong structure (excluding<br>platy structure).                         |
| 6                                             | Other silt loams, sandy clay loams, clay loams, silty clay loams.                                                                                                                                       |
| 7<br>Unsuitable for treatment<br>or dispersal | Sandy clay, clay, silty clay, strongly cemented or firm soils, soil with a moderate or strong platy structure, any soil with a massive structure, any soil with appreciable amounts of expanding clays. |

The minimum liquid volume for a septic tank serving a single-family residence containing three or fewer bedrooms is 900 gallons. A septic tank serving a single-family residence containing four bedrooms may be 1,000 gallons. Each bedroom after that requires an additional 250 gallons of septic capacity. The actual size of each ROSS within the GWMA is unknown.

The local health officer may require the owner of a failing OSS located within 200 feet of a public sewer service to hook up to that system WAC 246-272A-0025. Design specifications for OSS tanks are located at WAC 246-272C.

# Large Onsite Sewer Systems (LOSS)

Regulations for large on-site sewage (septic) systems (LOSS) are found at WAC 264-272B. LOSS are inventoried with the Department of Ecology as UIC wells (WAC 173-218-040) under a memorandum agreement between DOE and DOH.

## Biosolids

The DOE's biosolid program is administered independently of other agencies, but coordinated with health districts. Land application of biosolids requires pre-approval of application rates that are based upon agronomic crop requirements. Permittees receive coverage under a statewide general permit. Permit coverage is mandated for those who produce and/or land apply biosolids. The DOE's regulatory program incorporates site specific approvals with specific testing and analysis procedures, development of land application plans that prescribe specific practices and prohibitions, and a review and approval process for land application of the wastewater solids. Land application may only occur on permitted sites with pre-established buffers and setbacks.

"Regarding the statistics, the fields in the GWMA are almost all irrigated, high value crops: corn, hops, & alfalfa. As an example, the appropriate yield table for silage corn (attached) shows a requirement of 270 lbs/acre for a 30 ton yield—the median yield value. I make the pre-plant calculation so you look on the top line and ignore the soil-test-value column. So my average approval rate of 248 lbs/acre of plant available N (pre-plant soil N + biosolids N) is a very defensible value." (Sievertson).

# Residential Lawn Fertilizers

There are no known laws or regulations regarding homeowner maintenance of residential lawns. There are also no known laws or regulations regarding municipal maintenance of parks or grounds

# "Hobby Farms"

There are no known laws or regulations regarding maintenance of animals or herbaceous material on "hobby farms."

## Underground Injection Wells

Part C of the Federal Safe Drinking Water Act (SDWA), 42 U.S.C. §300h-3, regulates underground injection wells (UIC). Washington's UIC program is administered by the Department of Ecology. Its UIC regulations are found at WAC 173-218. The program is approved by the EPA pursuant to SDWA §1422, 40 CFR 147.2400. The program regulates the injection of fluids underground for storage, enhanced recovery, in the context of Class II, and disposal to prevent the contamination of underground sources of drinking water. Injection activities may be authorized by rule or permit. The regulations establish a non-endangerment standard designed to ensure that injected fluids do not cause or contribute to the movement of a contaminant into an underground source of drinking water if the

presence of that contaminant may cause or contribute to the exceedance of a drinking water standard ("MCL") or otherwise adversely affect the health of persons. (40 CFR 144.12, WAC 173-18-080).

# Abandoned Wells

Wells no longer in use are required by law to be "decommissioned." RCW 18.104.020 (3). WAC 173-160-381 describes the processes that must be used to decommission wells. A permit must be obtained before decommissioning may occur. RCW 18.104.030.

An "abandoned well" is one "that is unmaintained or is in such disrepair that it is unusable or is a risk to public health and welfare." RCW 18.104.020 (1).

# Environmental Effects

## Nitrate

Nitrate is an acute contaminant. It is colorless and odorless. It is found in many fertilizers, manure, liquid waste from septic tanks, and food processing waste. Prexcipitation or irrigation water can carry nitrate down through the soil into groundwater. Drinking water wells may contain nitrate if they draw from this groundwater (Ecology 2010).

## The Nitrogen Cycle

The Nitrogen Cycle was adequately described in the EPA's 2012 Report, "Relation Between Nitrate in Water Wells and Potential Sources in the Lower Yakima Valley":

Nitrogen is present in many chemical forms in the environment. Nitrogen gas (N2) composes about 78 percent of the atmosphere. Nitrite (NO2-), nitrate (NO3-) and organic nitrogen, ammonium (NH4) are also present.

Nitrogen is critical to plant growth. It aids in the formation and function of cellular tissue, proteins, and reproductive structures. Nitrogen can be supplied to plants through the application of synthetic fertilizers or animal waste products or by the organic decomposition of other plants. Atmospheric nitrogen must be processed, or fixed, to be used by plants. The majority of fixation occurs by bacteria. Small quantities of nitrate may wash out of the atmosphere from aerosol salt particles from the ocean or dusts from arid regions, or from fossil fuel combustion. (EPA 2012)

Important processes in the nitrogen cycle include nitrogen fixation, mineralization, nitrification, and denitrification. The mobility of nitrogen is highly dependent on its form and the matrix through which it moves. Organic nitrogen is nearly immobile. Mineralization occurs when organic nitrogen in the soil is converted by bacteria into ammonium (NH4). Nitrification occurs as ammonium is biologically oxidized to become nitrate as it moves through the vadose zone.

Nitrate is the most mobile form of nitrogen in both the vadose and saturated zones. Nitrate moves quickly in the saturated zone, together with migrating groundwater. Its mobility is enhanced by the action of negatively charged soil particles, which repel the negatively charged nitrate ion. (USGS 2000b). In the absence of denitrification, nitrate moves with the groundwater until the groundwater is discharged to surface

water, or extracted from a well. Denitrification is the conversion of nitrate back into nitrogen gas (N2) by bacteria. It can occur in anoxic conditions (where oxygen is depleted in the root zone). (EPA 2012).

## Nitrate Leaching

"Leaching" is the process of the removal of soluble material from a substance through the percolation of water. Nitrate can "leach" from the agricultural soils to the elevation of the groundwater aquifer. "The increase in groundwater nitrate concentration measured in domestic wells, irrigation wells, and public supply wells lags significantly behind the actual time of nitrate discharge from the land surface. The lag is due, first, to travel time between the land surface, which ranges from less than one year in areas with shallow water table to several years or even decades where the water table is deep. High water recharge rates shorten travel time to a deep water table, but in irrigated areas with high irrigation efficiency and low recharge rates, the transfer to a deep water table may take many decades." (Harter 2012)

## Health Effects to People

Exposure to excessive nitrate concentrations can reduce the ability of red blood cells to carry oxygen. (WDOH 2007c, WDOH 2016, Harter 2012, Appendix J) In most adults and children these red blood cells rapidly return to normal. However, in infants it can take much longer. Infants who drink water with high levels of nitrate (or eat foods made with nitrate contaminated water) may develop a serious health condition due to the lack of oxygen. This condition is called methemoglobinemia or "blue baby syndrome."

"Infants younger than 6 months may develop acquired methemoglobinemia from contaminated well water that has excess nitrates. Bacteria in a baby's digestive system mixes with the nitrates and leads to methemoglobinemia. Fully developed digestive systems keep children older than 6 months and adults from developing this nitrate poisoning." (McDowell/Biggers 2017)

While the problem is relatively well understood, there are no accurate statistics on the causal relationship between high nitrate concentrations in drinking water and the occurrence of methemoglobinemia. Acute cases do occur. There have been no deaths reported by medical professionals within the GWMA.

Bottled water is recommended for use in babies' foods and drinks. Although boiling water kills bacteria, it will not remove chemicals such as nitrate. In fact, boiling may actually increase the nitrate level. "Some studies have shown a positive association between long term exposure to nitrate in drinking water and risk of cancer and certain reproductive outcomes." (EPA 2012, Ward 2005) Other studies have shown no

association. (Ward 2005, Avery 1999). As nitrates rise in water supplies, the potential for increasing the health risk rises.

An infant with moderate to serious "blue baby syndrome" may have a brownish-blue skin tone due to lack of oxygen. This condition may be hard to detect in infants with dark skin. Infant decolorization is not required to be reported by physicians as health effects data. An infant with mild to moderate "blue baby syndrome" may have symptoms similar to a cold or other infection (fussy, tired, diarrhea or vomiting). While there is a simple blood test to see if an infant has "blue baby syndrome," doctors may not think to do this test for babies with mild to moderate symptoms.

The best way to prevent "blue baby syndrome," is to avoid giving babies water that may be contaminated with nitrate or foods that are high in nitrate. Infants less than one-year-old should not be given drinking water with nitrate levels more than 10 ppm. High-nitrate vegetables such as beets, broccoli, carrots, cauliflower, green beans, spinach, and turnips should not be offered until after six months of age. If a baby has a brownish-blue skin tone, he or she should be taken to a hospital immediately. A medication called "methylene blue" will quickly return the baby's blood to normal.

Red blood cells in older children and adults quickly return to normal. However, some health conditions make people susceptible to health problems from nitrate. They include individuals who don't have enough stomach acids and individuals with an inherited lack of the enzyme that converts affected red blood cells back to normal (methemoglobin reductase).

The *Preliminary Assessment* concluded that over 2,000 people in the area are exposed to nitrate over the maximum contaminant level (MCL) through their drinking water. (EPA 2010) But it also found that not all water supplies in the area have been affected, particularly including public water system supply. Public water systems are regularly monitored for suspected contaminants. They must meet national and state drinking water standards, and public systems that use contaminated water are required by law to treat the water, thus maintaining a safe supply of drinking water to their customers. Until treatment has been installed, or if the treatment isn't working, public water systems must notify their users if nitrate levels exceed the standard.

The *Preliminary Assessment* found that many families of the Lower Yakima Valley are served by private wells and do not have access to public water systems. Regular testing of drinking water is not required for private water wells. The *Preliminary Assessment* concluded that "There is sufficient data to suggest that many of these well water supplies are at risk, even if they do not currently exceed a drinking water standard." (EPA 2012). The Valley Institute for Research and Education collected data from the wells of low income

households in 2001 and 2002. In some areas, up to 40 percent of the wells sampled were above 5 mg/L nitrate, a level below the 10 mg/L Drinking Water Standard., but nevertheless recognized in the *Preliminary Assessment* as a concern. The LYVGWMA has caused testing of private groundwater wells to occur since it was organized. The data collected from that testing is set forth below under the section entitled "Initiatives Completed by the GWAC."

Owners of private wells who are unsure about their water quality may have their water tested for coliform bacteria and nitrate. The Yakima Health District (YHD) can advise where to get water tested and has specific recommendations for testing. Many certified labs in Washington charge \$20 to \$40 per test. If nitrate test results are over 8 mg/L, annual testing is recommended. If results are less than 8 mg/L, testing every three years is recommended.

The *Preliminary Assessment* expressed the concern that those who rely on private well water may not know the quality of the drinking water within their homes. They may not use tested wells, and if so, they may not know how to interpret the test results. Many residents are renters and are not the property or well owners. The well owner of record may not be the current property owner. Current property owners may not live on the property. Property owners may fear or question the implications of owning a contaminated well (in terms of liability, responsibility, property values, and access to safe and affordable housing) (EPA 2012).

Nitrates in groundwater may impact both domestic animals and wildlife. This can be either directly by ingestion, or indirectly through impacts to habitats, where groundwater discharging to surface water contributes to nutrient loading of streams, lakes, and wetlands.

The *Preliminary Assessment* found that nitrate-nitrogen concentrations are greatest in shallow groundwater. Shallow wells, poorly sealed or constructed wells, and wells that draw from shallow aquifers are at greatest risk of nitrate contamination. Manure and septic-tank waste may also contain disease-causing bacteria and viruses. Nitrate levels in well water can vary throughout the year. A significant decrease in nitrate-nitrogen concentrations was found in groundwater samples collected from depths below 300 feet. The highest percentage of samples exceeding State Drinking Water Standards (l0 mg/l nitrate-nitrogen) was obtained from shallow wells (less than 300 feet deep), a well depth typical of most private domestic drinking water wells. (EPA 2012)

#### Yakima River Surface Water Quality

The USGS' Hydrogeologic Framework the Yakima River Basin Aquifer System (USGS 2009a) posited a hydrologic connection between the surface water within the Yakima River and the groundwater beneath lands adjacent to the river. The USGS report did not establish any direct correlation between nitrogen in groundwater and nitrogen in the Yakima River. Water quality testing of agricultural surface-drains (which deliver water directly to the River) in 2017 found that 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter.

Section 303(d) of the CWA, 33 U.S.C., § 1313(d), requires states to identify waters where current pollution control technologies alone cannot meet the water quality standards set for that waterbody. Every two years, states are required to submit a list of impaired waters plus any that may soon become impaired to EPA for approval. The impaired waters are prioritized based on the severity of the pollution and the designated use of the waterbody (e.g., fish propagation or human recreation). States must establish the "total maximum daily load(s)" of the pollutant(s) in the waterbody for impaired waters on their list.

A "total maximum daily load" or "TMDL" is the amount of a specific pollutant that a waterbody can receive and still meet water quality standards. A TMDL is made up of the sum of all the point source loads ("wasteload allocation") and load associated with nonpoint sources and background sources ("load allocation"). TMDLs must include a margin of safety (explicit or implicit) and consider seasonal variations. Potential wasteload allocations include background, groundwater inflow, diffuse runoff, irrigated agriculture return flow, agricultural stormwater, atmospheric deposition, nonpoint sources, stormwater point sources, and non-stormwater point sources.

Numerous water quality assessments of the Yakima River are contained within Washington State's 303(d) list. Primary Yakima River surface water quality problems of concern are temperature, dissolved oxygen (DO) and acidity (pH). Nitrogen is an aquatic nutrient in surface water, which contributes to algae growth, but not included in the Yakima River's surface water quality problems.

EPA has approved two Ecology-proposed TMDL projects within the Lower Yakima River area. They are: Lower Yakima River Suspended Sediment and DDT TMDL—project approved for DDT and TSS parameters. See: <u>http://www.ecy.wa.gov/programs/wq/tmdl/yakima wq/LowerYakTMDL.html</u>; <u>https://fortress.wa.gov/ecy/publications/documents/97321.pdf</u>; Granger Drain Bacteria TMDL—project approved for fecal coliform bacteria parameter. See: <u>http://www.ecy.wa.gov/programs/wq/tmdl/GrangerTMDL.html</u>.

# Water Quantity and Quality Goals and Objectives

The LYVGMA goals and objectives for water quantity are set forth in the Yakima River Basin Integrated Water Management Plan (WBIWRP 2012).

The LYVGWMA goals for water quality published in the LYVGWAC Work Plan (9/30/2013) were as follows. Some, but not all, of the Goals and Objectives have been realized.

## LOWER YAKIMA VALLEY GROUNDWATER MANAGEMENT AREA

#### GOALS AND OBJECTIVES

The GWMA will be a multi-agency, citizen-based, coordinated effort to reduce groundwater nitrate contamination in the lower Yakima Valley. It will receive input from people affected or interested in the problems and solutions and will coordinate their energies toward action. It will work to achieve credibility with the general public and the farming community.

## GWMA GOAL

The primary long-term goal of the GWMA is to reduce concentrations of nitrate in groundwater to below Washington State drinking water standards.

### PROPOSED OBJECTIVES

Objectives have been divided into six categories: Data and Monitoring. Problem Identification, Measures to Reduce Groundwater Contamination, Education, Drinking Water Systems, and General objectives.

Input from the GWAC and citizen input will be used to refine and prioritize objectives. In general, refinement of objectives in each category will begin with an updated assessment of the current status of work.

### DATA AND MONITORING

- Collect and incorporate existing nitrate and nitrogen data into a shared data management system or data sharing site to improve understanding of the sources and extent of contamination.
- Establish a monitoring program to identify sources of nitrate contamination and their relative importance.

• Establish and conduct long-term groundwater quality monitoring program and evaluate progress.

# PROBLEM IDENTIFICATION

- Characterize the nature and extent of nitrate concentrations in Lower Yakima Valley groundwater.
- Identify and rank the sources of elevated nitrate in groundwater, with site-specific characteristics developed for 'hot spots" as appropriate.
- Identify and describe activities contributing to groundwater contamination based on scientific data and evaluation. Scientific and other data will be shared among the partners to facilitate development of effective programs and strategies.

# MEASURES TO REDUCE GROUNDWATER CONTAMINATION

- Develop effective and coordinated best management practices (BMP5) to address specific nitrate sources.
- Develop strategies for implementing best management practices such as technical assistance, education, ordinances and coordination with other regulatory and nonregulatory programs.
- Support enforcement of new and existing laws and ordinances.

# **EDUCATION**

- Establish educational programs to promote the protection of groundwater quality and provide a forum for stakeholders to discuss nitrate reduction methods and improvement of groundwater quality. This will include culturally-appropriate education and outreach.
- Establish a clearinghouse for pertinent public health, environmental, and business information.
- Educate private well owners on water quality testing methods, frequencies, interpretation of results, and funding sources.

## DRINKING WATER SYSTEMS

- Provide water quality and hydrogeologic data to assess needs and methods of expanding public water supplies, and provide a forum for initiation of these plans.
- Consider options to encourage appropriate expansion of public water supplies to areas that are currently dealing with contaminated private supplies.

• Assist residents whose supplies have been contaminated to access safe and reliable water supplies, using culturally-appropriate communications.

## GENERAL

- Pollution prevention will be a guiding principle for all work done by the GWMA.
- Participation by the Yakama Nation will be requested and encouraged in a way that is consistent with their sovereignty.
- Participating agencies will maintain their regulatory authority using their own discretion as appropriate. They will also seek opportunities to coordinate actions and address regulatory gaps.
- The GWMA will seek sustainable funding sources to carry out its mission.

# **GWAC** Initiatives

Interim Education and Outreach

The education and public outreach (EPO) objectives identified in the GWMA Work Plan recognized the role that public health, time, evolving investigations, and the final GWMA Program would play in an outreach strategy. Accordingly, multiple objectives were identified for the Education Program component, from early Program development, to post-GWMA Program implementation and future Program reviews.

The first objective: to develop a strategy to guide the GWAC's education and public outreach during Program development. The plan identified four central components for the GWAC to follow. The first three were:

"... establish educational programs to promote the protection of groundwater quality and provide a forum for stakeholders to discuss nitrate reduction methods and improvement of groundwater quality. This will include culturallyappropriate education and outreach. Establish a clearinghouse for pertinent public health, environmental, and business information." (GWAC Work Plan, Adopted February 6, 2013)

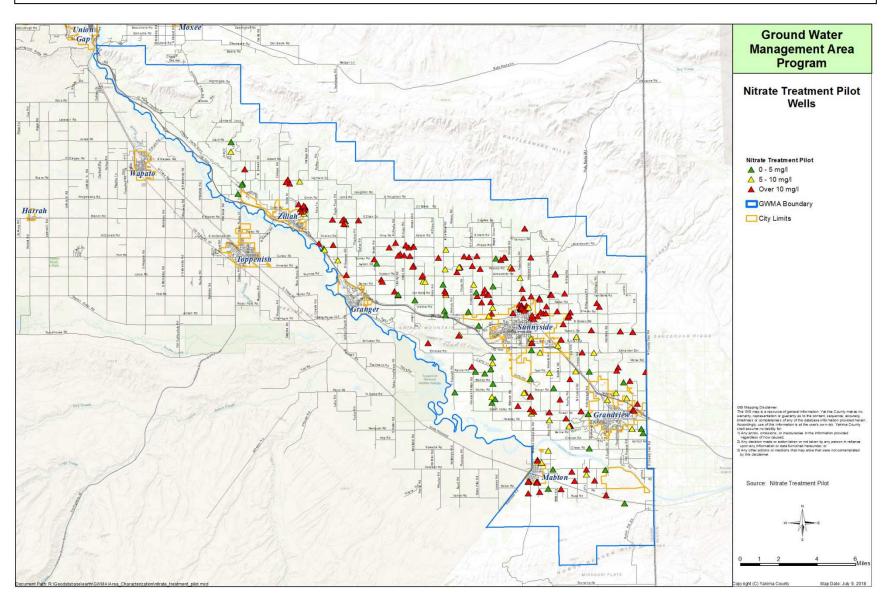
A fourth component—to educate private well owners on water quality testing methods, frequencies, interpretation of results, and funding sources—completed the educational expectations set forth in the GWAC Work Plan.

The role of education, however, did not stop at the GWMA Program adoption. The work plan suggested that the outreach conducted during Program development would inform—and be an integral part of—the final GWMA Program's sections on water quality goals and objectives, the regulatory environment, and investigation and analysis of Program alternatives.

A successful GWMA Program would require an informed and field-tested educational strategy, which could not be defined without the groundwork laid during Program development. Success of educational efforts made during Program development was would define how to better to engage the public in the GWMA Program, to implement proposed educational alternatives, and to measure the success of multiple milestones over time within the GWMA Program.

#### 2011 Nitrate Treatment Pilot Program

In 2010-11, Yakima County partnered with the Departments of Health, Ecology, EPA, the Yakima Health District, the Yakama Nation and others to provide free water treatment systems, public education, and technical assistance to households with individuals at high public health risk from nitrate contaminated wells in the lower Yakima basin. (Lower Yakima Basin Nitrate Treatment Pilot Program Final Report June 2011). The Program boundaries followed what would become the LYVGWMA as well as encompassing the Yakama Nation.


An intensive bilingual outreach effort was implemented (7641 English/Spanish packets either mailed or hand-delivered to every household on a private well in the target area; bilingual public meetings were held; bilingual radio and TV spots aired; door-to-door intensive Spanish-language outreach conducted, a toll-free bilingual hot line established) to provide education, technical assistance and free water treatment systems to households that exceeded the 10 mg/L standard.

While it was estimated that between 700 and 1,000 homes in the Program area were supplied by water wells with nitrates in excess of the drinking water standard, only 177 households requested (and qualified for, based on certified lab results) the water treatment system. The lessons learned that would inform future outreach included:

- Health effects of nitrate are difficult to convey, not visible, not easily understood related to contamination threshold and risk factors.
- A lack of interest from the public. With no local reports of nitrate-related health problems, the public's concern was not high.
- Due to the large size of the project area and its rural character, there is little "community" presence and community leadership to draw upon for outreach.
- Illiteracy and low reading comprehension skills in some households required one-on-one site assistance to verify Program eligibility and to complete applications.

The Nitrate Treatment Program illustrated the challenge of communicating complex messages to a discrete, hard-to-reach audience. But it did introduce the nitrate issue to residents within the target area. Therefore, residents who participated in the Treatment Program were familiar with the nitrate issue when the GWMA Outreach Program was launched.

Water quality samples were also taken. See Appendix K for data collected.



# FIGURE 19 - NITRATE PILOT PROJECT WATER TEST LOCATIONS

#### GWMA Program Development, Early Products

With immediate contractual obligations to create both an outreach program and a web-based information application (IAA No. C1200235, the Department of Ecology and Yakima County), the Education and Public Outreach (EPO) working group was organized and began regular meetings in the fall of 2012.

The outcome of those early meetings was the *Public Education and Outreach Plan* (adopted December 12, 2012), and the creation of the first GWMA website. The website would be redesigned twice and undergo numerous revisions as GWAC activities, outreach, and the evolving GWMA Program took shape.

The outreach work of the next four years – 2013-2017 – was guided by the *Public Education and Outreach Plan* objectives: 1) educating at-risk audiences about the risks of elevated nitrate to human health and how to protect themselves from that risk; 2) informing audiences about the GWAC planning process, and 3) inviting participation in the development of the GWMA Program.

The work: message development, audience targeting, evaluating and responding to outreach requests from the GWAC and working groups. The products: "boots on the ground" bilingual campaigns that included door-to-door surveys, "New Mom" hospital brochures, presentations to Sunnyside WorkSource clients, free private well testing, direct mail, billboards, participation at health fairs, and radio and TV outreach. Partnership: A new partnership was developed with the University of Washington's Pediatric Health Specialty Unit (PEHSU) to train healthcare providers to be aware of the nitrate issue and address it with their at-risk patients. These campaigns would be the field tests for the final GWMA Program outreach strategy. [Full list – Appendix I]

Three outreach campaigns that would help inform the Program are highlighted below.

2013 Door-To-Door Public Opinion Survey

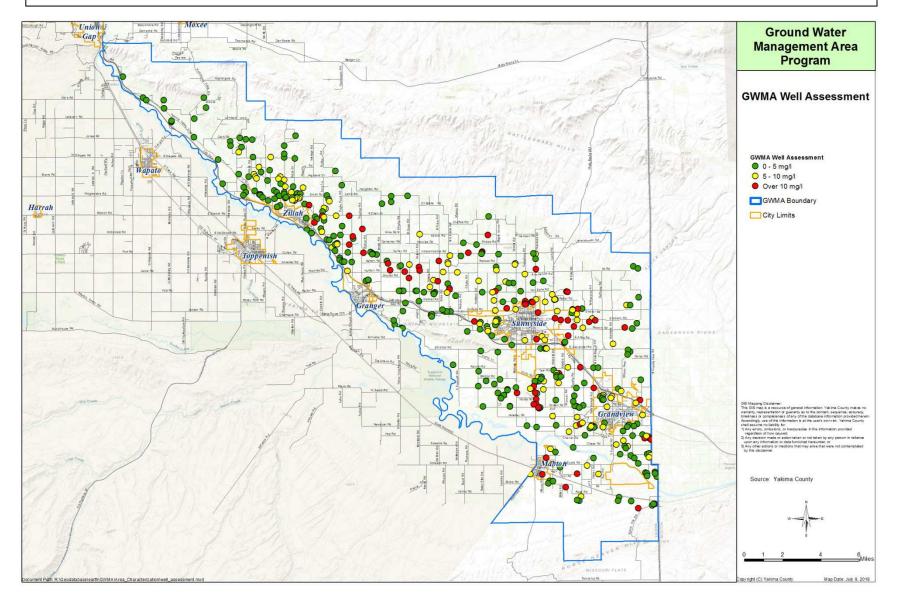
A 2013 bilingual door-to-door survey was developed to measure what residents in the GWMA served by private wells knew – or didn't know –about their private wells, about nitrates in drinking water, and about the formation of the GWMA. The eight targeted areas encompassed 300 households in the LYVGWMA ranging from Konnowac Pass in the northeast to County Line Road to the southeast. The areas chosen were known to either have high nitrate in groundwater or were in areas where little data on nitrate levels existed. 136 households responded to the survey, administered by Heritage University students. The results indicated that 69 percent (94 households) surveyed were aware of the potential health risks associated with drinking water with high levels of nitrate. Over half of those surveys had had their private well tested for nitrate. Four percent (six households) believed someone in their home had become ill from drinking their well water. None, however, indicated that high levels of nitrate were the source of the illness.

Out of the 136 households, only one reported having an infant. Only one household had a pregnant woman. Seven households reported having a chronically ill individual; however, the survey did not ask for the specific illness.

Less than half (42 percent) had heard of the lower Yakima Valley Groundwater Management Area (see Appendix I for survey results). Participants were also asked if they were interested in participating in a more in-depth private well testing. The participants responding "yes" would be invited to a second, more in-depth study of private wells in the Lower Yakima Valley.

High Risk Well Assessment Surveys Phases I & II (2014 and 2016, respectively). This campaign took a closer look at the water quality of private wells in the GWMA, and measured households' understanding of their well maintenance responsibilities, how their own actions might influence groundwater quality, and also measured households' awareness of how to protect the quality of their drinking water. 466 sampling surveys were conducted. See survey instrument in Appendix I.

Although the sample size was too small to assess data patterns, the lessons learned included:


1) Residents on private wells need to test their wells;

2) Well owners should become more familiar with their wells (e.g., location of their well log, depth of well, condition of well);

3) The need to explore the possible connection between not testing a well and its likelihood of testing high for nitrate.

Water quality samples were also taken. See Appendix L for collected data.

## FIGURE 20 - HIGH RISK WELL ASSESSMENT TEST LOCATIONS



#### GWMA Website

The GWMA Website (<u>http://www.yakimacounty.us/541/Groundwater-Management-Area</u>) served as the information clearinghouse required under the Work Plan. It provided a central source of information about the GWAC, the working groups and their products, and links to technical assistance. It was also intended to inform the public about the GWMA Program development.

Although the website link was advertised on nearly every English/Spanish document, presentation and billboard the EPO produced, the hits the website received and the specific pages that were viewed (resource materials) suggested that the primary users were GWAC members and researchers from outside the Program area (some access to Spanish language pages requires navigation first .through English language pages).The EPO working group speculated that the web's most practical use was for agencies and individuals seeking academic information about the GWMA. While efforts were made to make it more inviting to the public (bilingual content, graphics, surveys), there was no evidence (e.g., increased page hits) that the effort was successful.

The results of the EPO's outreach campaigns and the products it produced are set forth in Appendix I of this Program.

#### **Best Management Practices**

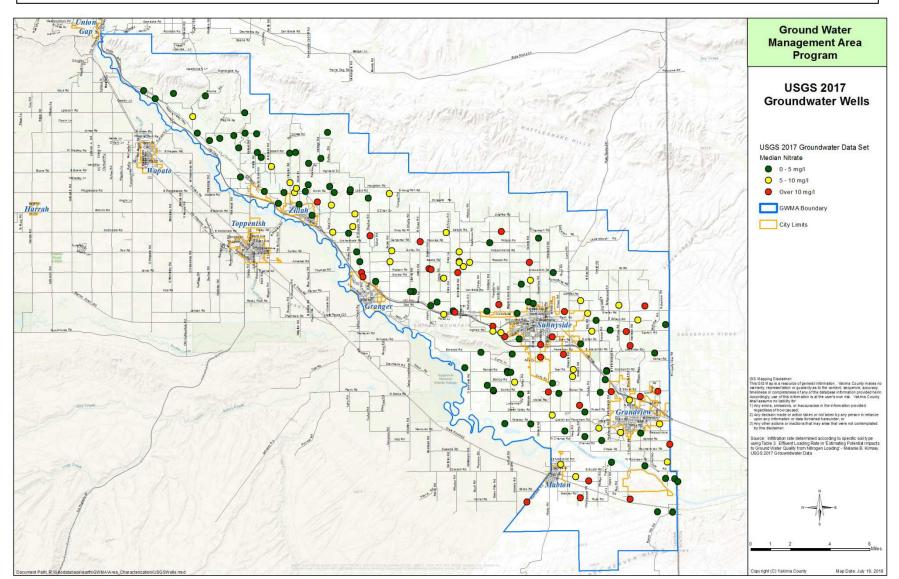
The LYVGWMA initially contracted with HDR to produce a complete list of all the potential best management practices that may be applicable to agricultural, industrial, urban and domestic activity within the LYVGWMA. The Irrigated Agriculture Work Group of the Groundwater Advisory Committee reviewed the HDR produced list and selected those best management practices they felt particularly relevant to their respective operations. Those best management practices are set forth in Appendix D of this Program. The Livestock/CAFO Work Group of the Committee elected to review the best management practices listed by the Natural Resource Conservation Service (NRCS) to determine those particularly relevant to livestock/CAFO operations. Those best management practices are set forth in Appendix E of this Program.

#### Groundwater Monitoring Plan

The GWAC developed an Interim Final Groundwater Monitoring Plan (PGG 2014) in order to establish a network of wells and field procedures with which to evaluate current and future nitrate concentrations in the Area's groundwater. The objectives of this Plan were to establish procedures for the

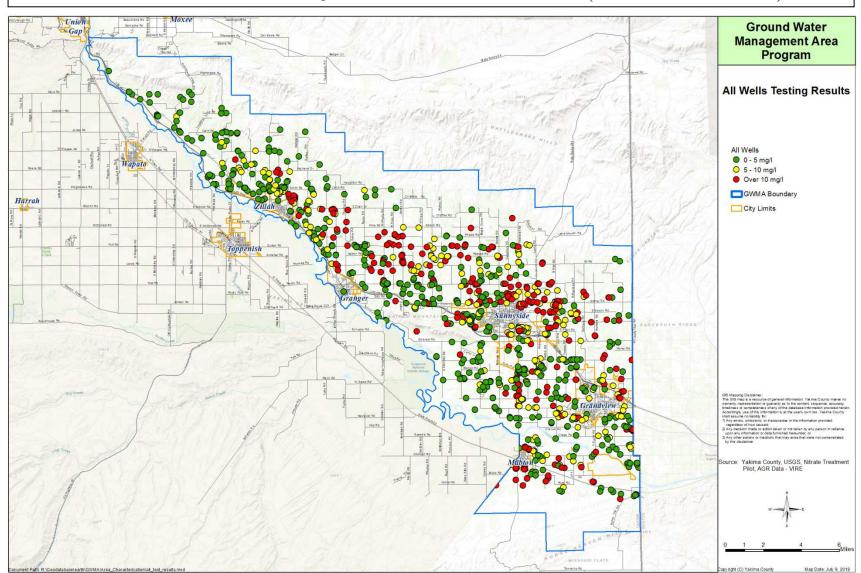
collection and analysis of representative groundwater samples for nitrate and nitrate-related analyses. Data collected pursuant to the Plan is intended to be used to: evaluate BMP effectiveness, evaluate groundwater trends, identify nitrate hotspots, and calculate basin-wide average nitrate concentrations. Analytic results from the same data was intended to be used by the GWAC to make administrative decisions and policy recommendations. The Plan, prepared in accordance with hydrogeologic practices generally accepted at this time in the relevant area, addressed sampling procedures, sampling schedule (developed following identification of the sampling network), establishment of a sampling network, quality assurance/quality control, reporting frequency and schedule.

The sampling program described in the Plan involved collecting groundwater samples from a network of wells for analyses of nitrate, nitrite, ammonia, and the sum of organic nitrogen + ammonia + ammonium (Total Kjeldahl Nitrogen). The network could include wells that already have pumps (private, public, and irrigation supply wells) and monitoring wells that require use of sampling pumps. Groundwater samples would be analyzed by labs accredited by the Washington State Department of Ecology (Ecology). A Groundwater Monitoring Quality Assurance/Quality Control Plan (PGG 2013) was prepared in anticipation of the Groundwater Monitoring Plan.


Yakima County has begun to contract for the installation of monitoring wells. The network is formative but not complete at this time. No private, public or irrigation supply wells are included in the anticipated monitoring well network. No plan for data gathering or analysis has yet been established to determine whether there is a reduction of the number of incidents of measured exceedance of water quality standards.

### USGS Drinking Water Quality Testing

Yakima County contracted with the USGS to test and evaluate the quality of drinking water supplies within the LYVGWMA. USGS identified 160 water wells common to USGS' water testing data base and Yakima County's water testing data base all of which had existing drilling records from which to determine water levels, well construction details and some prior testing history. USGS then tested these wells six times each during calendar year 2017, with the objective of determining whether measurements vary based on the seasons of the year or agricultural cropping schedules.


USGS, in cooperation with the LYVGWMA group, conducted an intensive groundwater sampling collection effort of collecting nitrate concentration data in drinking water to provide a baseline for future nitrate assessments within the LYVGWMA. About every 6 weeks from April through December 2017, a

total of 1,059 samples were collected from 156 wells and 24 surface-water drains. See Appendix M for collected data. The domestic wells were selected based on known location, completion depth, ability to collect a sample prior to treatment or filtration, and distribution across the LYVGWMA. The drains were pre-selected by the GWAC, and further assessed based on ability to access sites and obtain a representative sample. More than 20 percent of samples from the domestic wells and 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter established by the U.S. Environmental Protection Agency. At least one nitrate concentration above the MCL was detected in 26 percent of wells and 33 percent of drains sampled. Nitrate was not detected in 13 percent of all samples collected. (USGS 2018).



# FIGURE 21 - USGS 2017 GROUNDWATER WELL TEST LOCATIONS

118



## FIGURE 22 - ALL WATER QUALITY SAMPLING LOCATIONS (3 TESTING PROGRAMS)

## Deep Soil Sampling Program

Between the fall of 2014 and the spring of 2016, Yakima County contracted with the South Yakima Conservation District and Landau Associates to perform four rounds of deep soil sampling (DSS) on agricultural land in the GWMA target area. All participants volunteered to participate in the Program, subject to the condition that the physical location of sampling was anonymous and undisclosed.

The purposes of the DSS as stated in the Sampling Plan were to 1) provide baseline data regarding the nitrogen content (nitrate, ammonium, and organic matter) of soils underlying a variety of soil, crop, and irrigation systems that represent a cross-section of agricultural activities; 2) provide an initial assessment of current nitrogen and water management practices in place today and in the past; 3) provide information regarding availability of soil nitrogen to crops; 4) provide the foundation for a technically based education program; and 5) provide information about project design, practical realities, time requirements and costs that can be used in developing subsequent project scopes.

Due to the fact that the physical location of sampling was not disclosed, all of the project's purposes were not realized. Nitrate concentration were measured at 6 ft below ground surface at 175 sites. Members of the GWAC who are actively farming stated that they believe that property owners who volunteered to participate in the project gathered helpful information that would improve their management practices related to nitrogen application and movement of nitrates within the soil of their agricultural property. Analysis of the practical realities, time requirements and costs of the project indicate that, without possible identification of particular locations tested, the project would be too expensive to continue or repeat.

### Identification and Ranking of Sources of Elevated Nitrate in Groundwater

The LYVGWAC identified sources of elevated nitrate generically (presented above). No ranking was made of these sources.

# Development of Specific Characteristics of "Hot Spots"

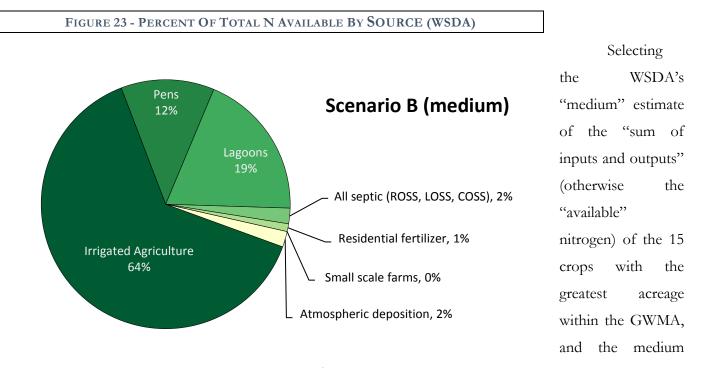
The LYVGWAC did not develop specific characteristics of hot spots nor locate them. The Groundwater Monitoring Program does not include an approach for identifying hot spots.

#### Nitrogen Loading Assessment

Yakima County contracted with the Washington State Department of Agriculture to study the amount of nitrogen "loaded" to groundwater within the LYVGWMA. WSDA produced a final report in June 2018 incorporating analysis provided by Yakima County regarding nitrogen contributions from residential, commercial, industrial and municipal sources. (WSDA 2018) That report estimated and analyzed the amount of nitrogen "available" for potential loading, but did not take into account soil processes between the point of availability and the groundwater surface.

The report estimated potential nitrogen availability in the landscape in four categories: Concentrated Animal Feeding Operations (CAFOs and dairies), including livestock pens and manure lagoons, irrigated agriculture activities including 15 types of irrigated crops that constitute 96 percent of irrigated acreage within the LYVGWMA, residential, commercial and municipal sources and atmospheric deposition. Both locally-derived information (particularly from mass-balance calculations of irrigated agriculture within the area) and data from scientific literature (particularly related to CAFOs and dairies) was used. The report based its conclusions on low, medium and high estimates of nitrogen available within the four categories. No measurement or analysis was done regarding biosolids. Atmospheric deposition of nitrogen was assumed within the calculations performed with respect to irrigated crops, animal pens and lagoons, and otherwise estimated for other acreage. (WSDA 2018)

The report estimated the nitrogen available within the GWMA from irrigated agriculture, CAFO/dairies, on-site septic/sewer systems, residential lawn fertilizers and small scale (hobby) farms, and atmospheric deposition. The final report listed the low, medium and high estimate for irrigated agriculture in ranges, each beginning with zero.


|                 | Acreage  | Sum of inputs and outputs |        |         |  |
|-----------------|----------|---------------------------|--------|---------|--|
| Commodity       |          | for one year              |        |         |  |
|                 |          | (lb N/ac-yr)              |        |         |  |
|                 |          | Low                       | Medium | High    |  |
| Apple           | 17,333.0 | -                         | 64.0   | 165.0   |  |
| Corn (silage)   | 16,778.0 | -                         | 47.0   | 242.0   |  |
| Triticale       | 10,780.0 | -                         | 13.0   | 250.0   |  |
| Grape (juice)   | 10,257.0 | 15.0                      | 105.0  | 142.0   |  |
| Alfalfa         | 7,989.0  | -                         | -      | -       |  |
| Pasture         | 6,731.0  | -                         | -      | 62.0    |  |
| Cherry          | 6,336.0  | 27.0                      | 78.0   | 156.0   |  |
| Hops            | 5,961.0  | -                         | 99.0   | 113.0   |  |
| Grape (wine)    | 5,126.0  | 40.0                      | 67.0   | 102.0   |  |
| Pear            | 3,331.0  | -                         | 65.0   | 119.0   |  |
| Mint            | 1,418.0  | -                         | 46.0   | 102.0   |  |
| Wheat           | 1,283.0  | -                         | 44.0   | 113.0   |  |
| Corn (grain)    | 1,166.0  | -                         | 148.0  | 284.0   |  |
| Asparagus       | 854.0    | 58.0                      | 130.0  | 156.0   |  |
| Peach/Nectarine | 843.0    | 12.0                      | 54.0   | 104.0   |  |
| Total           | 96,186.0 | 152.0                     | 960.0  | 2,110.0 |  |

#### TABLE 12 - AVAILABLE N OF IRRIGATED AGRICULTURE

# TABLE 13 – AVAILABLE N OF CAFO / DAIRY, ON-SITE SEPTIC/SEWAGE, RCIM WASTE AND ATMOSPHERIC DEPOSITION

|                        |          | Low         | Medium      | High        |
|------------------------|----------|-------------|-------------|-------------|
|                        | Acres    | (lbs/ac/yr) | (lbs/ac/yr) | (lbs/ac/yr) |
| Pens                   | 2,096.0  | 67.0        | 480.0       | 892.0       |
| Lagoons                | 210.0    | 1,354.0     | 7,448.0     | 13,542.0    |
| ROSS                   | 398.0    | 223.0       | 403.0       | 662.0       |
| LOSS                   | 3.0      | 195.0       | 209.0       | 225.0       |
| COSS                   | 30.0     | 163.0       | 173.0       | 183.0       |
| Res Fert               | 4,381.0  | 4.7         | 11.7        | 18.6        |
| Small Scale Farm       | 2,096.0  | 4.3         | 10.7        | 17.1        |
| Atmospheric Deposition | 73,976.0 | 1.5         | 2.1         | 6.2         |

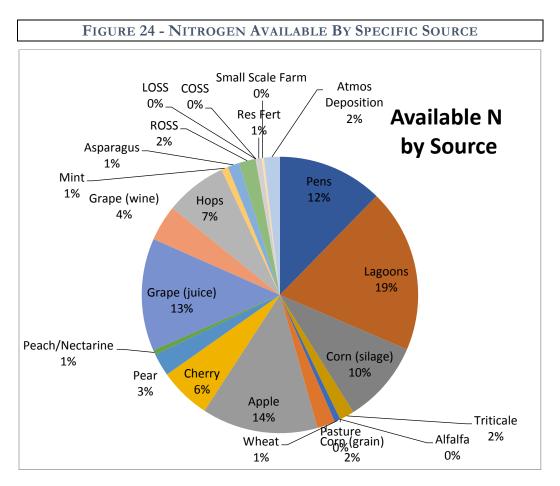
WSDA's final study concluded that approximately 64 percent of the available N was attributable to irrigated agriculture, 12 percent to dairy and cattle pens, 19 percent to liquid manure lagoons, two percent to all septic systems, two percent to atmospheric deposition (that portion attributable to irrigated agricultural acreage) one percent to residential fertilizers and less than one percent to small scale farms.



estimate of the of pens, lagoons, on-site septic/sewage, RCIM waste and atmospheric deposition, then multiplying the acreage of each times the amount of N available, the total contribution of all sources can be estimated.

The "medium" nitrogen availability has been chosen as the preferred analytic measure because of the numerous assumptions and subjective estimates contained in the mass balance analysis done for irrigated agriculture and the potential variance of location, climate, latitude, soils or other conditions in the cases cited in the scientific literature relied upon for CAFO/dairy facilities.

| Source of        | A         | Medium        | Total       | Total       | % of Total  |
|------------------|-----------|---------------|-------------|-------------|-------------|
| Available N      | Acres     | (lbs N/ac-yr) | (lbs N/yr)  | (Tons N/yr) | N Available |
| Apple            | 17,333.0  | 64.0          | 1,109,312.0 | 554.66      | 13.83%      |
| Corn (silage)    | 16,778.0  | 47.0          | 788,566.0   | 394.28      | 9.83%       |
| Triticale        | 10,780.0  | 13.0          | 140,140.0   | 70.07       | 1.75%       |
| Grape (juice)    | 10,257.0  | 105.0         | 1,076,985.0 | 538.49      | 13.43%      |
| Alfalfa          | 7,989.0   | -             | -           | -           | 0.00%       |
| Pasture          | 6,731.0   | -             | -           | -           | 0.00%       |
| Cherry           | 6,336.0   | 78.0          | 494,208.0   | 247.10      | 6.16%       |
| Hops             | 5,961.0   | 99.0          | 590,139.0   | 295.07      | 7.36%       |
| Grape (wine)     | 5,126.0   | 67.0          | 343,442.0   | 171.72      | 4.28%       |
| Pear             | 3,331.0   | 65.0          | 216,515.0   | 108.26      | 2.70%       |
| Mint             | 1,418.0   | 46.0          | 65,228.0    | 32.61       | 0.81%       |
| Wheat            | 1,283.0   | 44.0          | 56,452.0    | 28.23       | 0.70%       |
| Corn (grain)     | 1,166.0   | 148.0         | 172,568.0   | 86.28       | 2.15%       |
| Asparagus        | 854.0     | 130.0         | 111,020.0   | 55.51       | 1.38%       |
| Peach/Nectarine  | 843.0     | 54.0          | 45,522.0    | 22.76       | 0.57%       |
| Pens             | 2,096.0   | 480.0         | 1,006,080.0 | 503.0       | 12.54%      |
| Lagoons          | 210.0     | 7,448.0       | 1,564,080.0 | 782.0       | 19.50%      |
| ROSS             | 398.0     | 403.0         | 160,394.0   | 80.2        | 2.00%       |
| LOSS             | 3.0       | 209.0         | 627.0       | 0.3         | 0.01%       |
| COSS             | 30.0      | 173.0         | 5,190.0     | 2.6         | 0.06%       |
| Res Fert         | 4,381.0   | 11.7          | 51,257.7    | 25.6        | 0.64%       |
| Small Scale Farm | 2,096.0   | 10.7          | 22,427.2    | 11.2        | 0.28%       |
| Total            | 105,400.0 | 9,695.4       | 8,020,152.9 | 4,010.1     | 100.00%     |


TABLE 14 - TOTAL AVAILABLE N FROM ALL SOURCES STUDIED IN WSDA 2018

When the acreages utilized by WSDA are summed, the total is greater than the acreage within the GWMA.

|                             | Acres     |
|-----------------------------|-----------|
| Total Irrigated Agriculture | 96,186.0  |
| Total Other                 | 9,214.0   |
| Total Acreage               | 105,400.0 |

| TABLE 15 - TOTAL ACREAGE FOR N |
|--------------------------------|
| AVAILABILITY COMPUTATIONS      |

This is a result of double-counting of acreage which is "double cropped" (corn (silage), triticale, alfalfa), or "double used" (farming, septic). The double counting of acreage is necessary to obtain total nitrogen availability.



It is thus possible to see the contribution of total nitrogen available from all studied sources.

The information provided by WSDA (WSDA 2018) can also be assembled by more general industry groups:

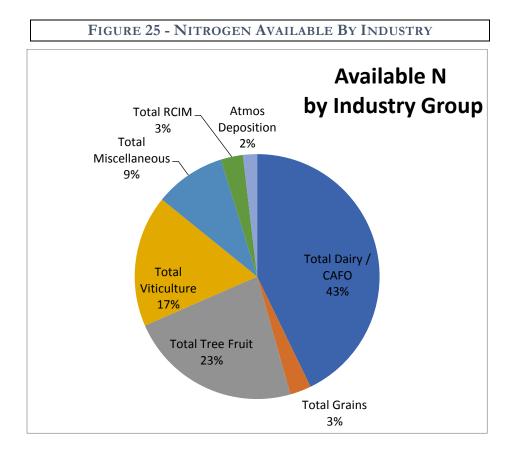

| Nitrogen Availability by Industry Group |          |             |             |           |
|-----------------------------------------|----------|-------------|-------------|-----------|
|                                         | Total N  |             | Total N     |           |
|                                         |          | Medium N    | Medium      | Medium    |
|                                         | Acres    | (lbs/ac/yr) | (lbs/yr)    | (tons/yr) |
| Pens                                    | 2,096.0  | 480.0       | 1,006,080.0 | 503.04    |
| Lagoons                                 | 210.0    | 7,448.0     | 1,564,080.0 | 782.04    |
| Corn (silage)                           | 16,778.0 | 47.0        | 788,566.0   | 394.28    |
| Triticale                               | 10,780.0 | 13.0        | 140,140.0   | 70.07     |
| Alfalfa                                 | 7,989.0  | -           | -           | -         |
| Pasture                                 | 6,731.0  | -           | -           | -         |
| Wheat                                   | 1,283.0  | 44.0        | 56,452.0    | 28.23     |
| Corn (grain)                            | 1,166.0  | 148.0       | 172,568.0   | 86.28     |
| Apple                                   | 17,333.0 | 64.0        | 1,109,312.0 | 554.66    |
| Cherry                                  | 6,336.0  | 78.0        | 494,208.0   | 247.10    |
| Pear                                    | 3,331.0  | 65.0        | 216,515.0   | 108.26    |
| Peach/Nectarine                         | 843.0    | 54.0        | 45,522.0    | 22.76     |
| Grape (juice)                           | 10,257.0 | 105.0       | 1,076,985.0 | 538.49    |
| Grape (wine)                            | 5,126.0  | 67.0        | 343,442.0   | 171.72    |
| Hops                                    | 5,961.0  | 99.0        | 590,139.0   | 295.07    |
| Mint                                    | 1,418.0  | 46.0        | 65,228.0    | 32.61     |
| Asparagus                               | 854.0    | 130.0       | 111,020.0   | 55.51     |
| ROSS                                    | 398.0    | 403.0       | 160,394.0   | 80.20     |
| LOSS                                    | 3.0      | 209.0       | 627.0       | 0.31      |
| COSS                                    | 30.0     | 173.0       | 5,190.0     | 2.60      |
| Res Fert                                | 4,381.0  | 11.7        | 51,257.7    | 25.63     |
| Small Scale Farm                        | 2,096.0  | 10.7        | 22,427.2    | 11.21     |
| Atmos Depositior                        | 73,976.0 | 2.1         | 151,650.8   | 75.83     |

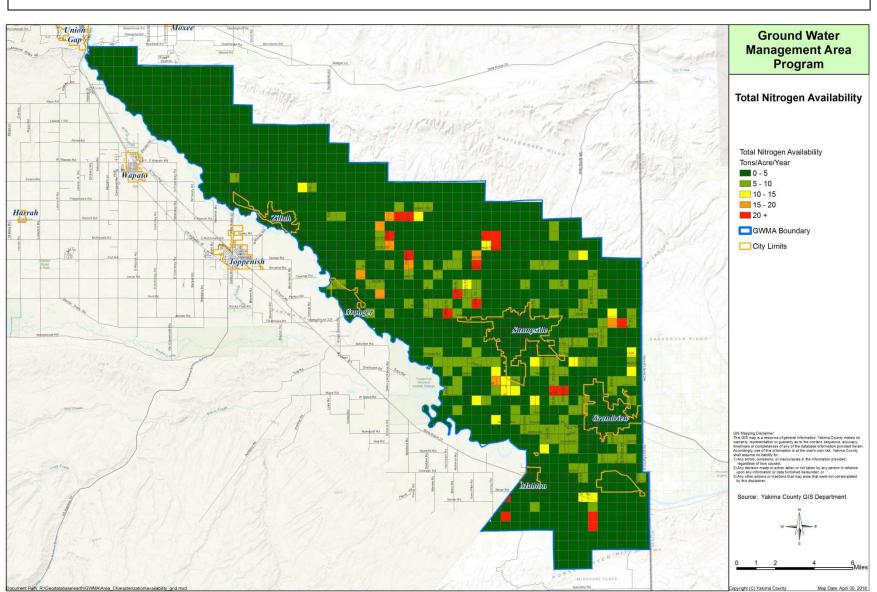
TABLE 16 - NITROGEN AVAILABILITY ASSEMBLED BY INDUSTRY GROUP

When the components of industry groups are totaled, a somewhat different view of nitrogen availability is possible:

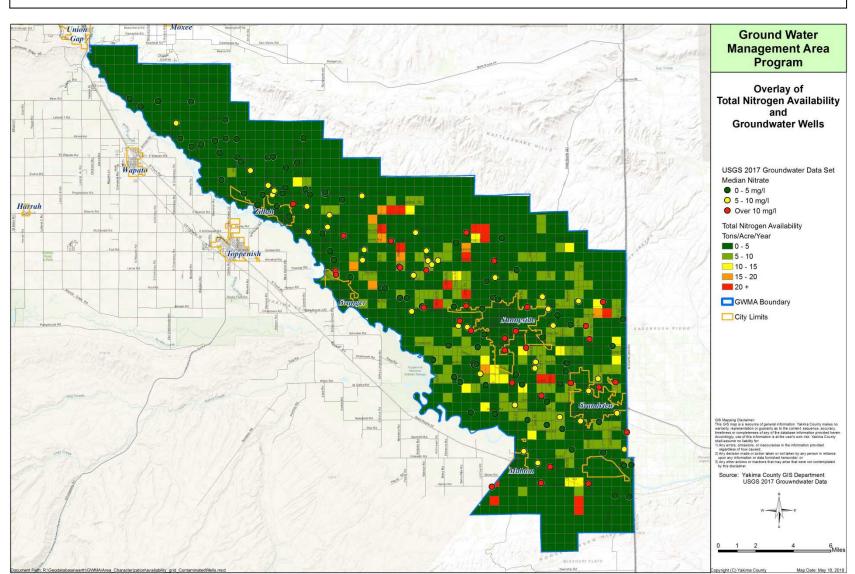
|                     | Total N   |
|---------------------|-----------|
|                     | Medium    |
| Industry Group      | (tons/yr) |
| Total Dairy / CAFO  | 1,749.43  |
| Total Grains        | 114.51    |
| Total Tree Fruit    | 932.78    |
| Total Viticulture   | 710.21    |
| Total Miscellaneous | 383.19    |
| Total RCIM          | 119.95    |
| Atmos Deposition    | 75.83     |

TABLE 17 - INDUSTRY GROUP TOTAL N AVAILABILITY

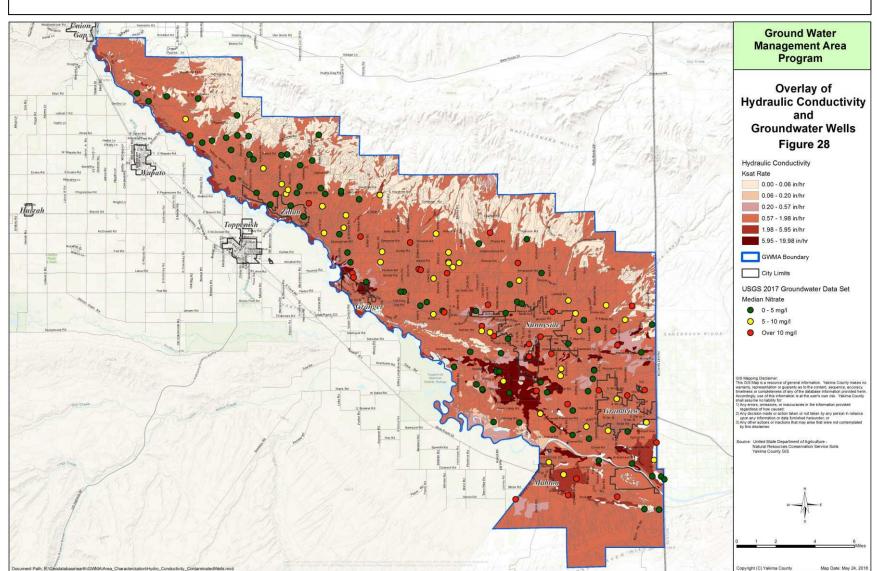



#### Mean Annual Groundwater Recharge Model

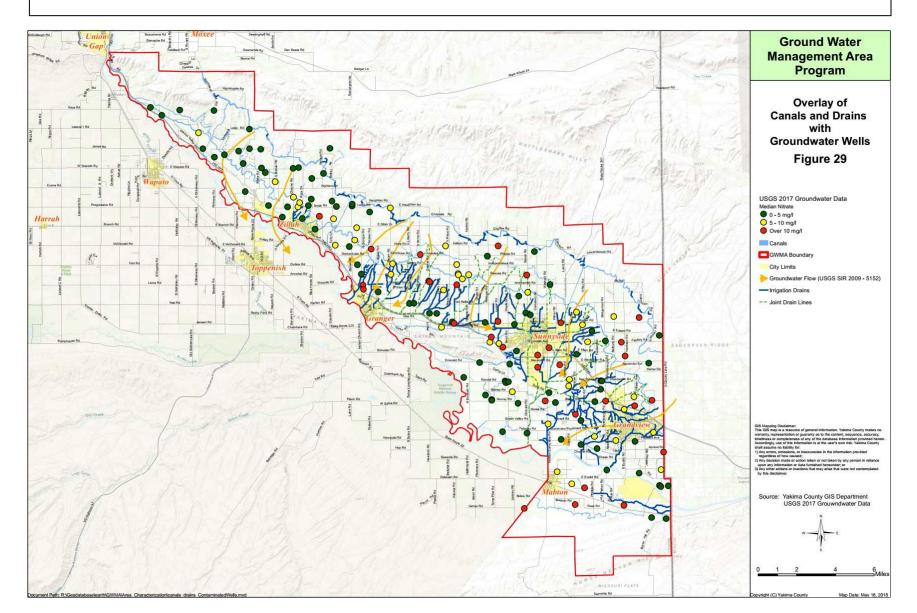
The LYVGWMA did not remodel estimates of mean annual groundwater recharge as modeled by USGS (USGS 2007a). Remodeliing could consider more recent data inputs including a more recent period of climate condition, evolved irrigation methods, actual irrigation water application rather than estimated irrigation water application, and more particularized study of the LYVGGWMA, rather than the basin-wide study of the USGS' 2007 report. The increments of estimated annual recharge could also be refined to be more informative about any particular segment of land within the LYVGWMA


### Geographic Information System Study

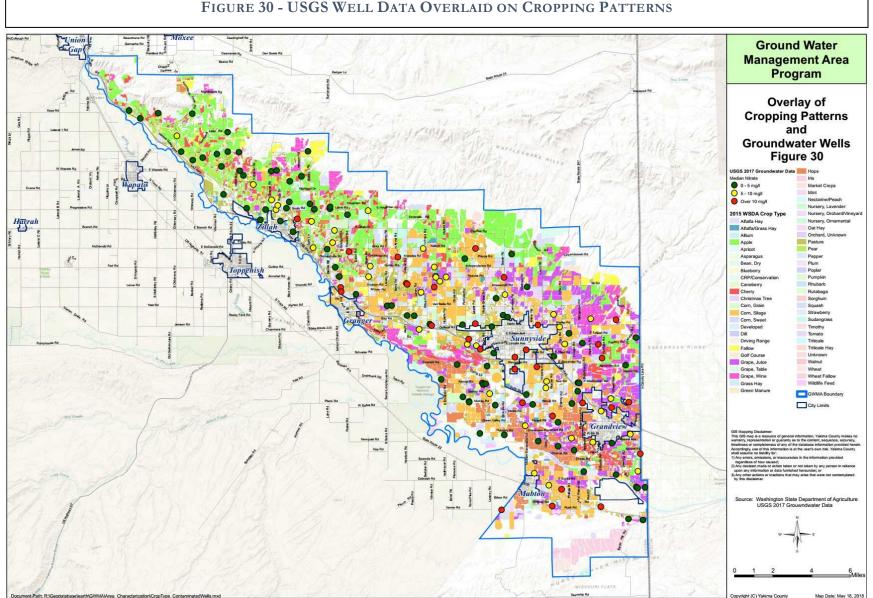
Yakima County maintains a geographic information system (GIS) data bank of numerous categories of information delivered to or through the county's various governmental processes. Data requests were made to the Washington State Departments of Agriculture, Ecology, Health, and Natural Resources, U.S. Departments of Agriculture (NRCS), Geological Survey (USGS), Census Bureau, Environmental Protection Agency and National Atmospheric Deposition Program for additional relevant information maintained or organized by geographic coordinates capable of inclusion in Yakima County's GIS system. Information from WSDA's nitrogen availability study (WSDA 2018) was fully integrated into the GIS system, as was the data from several water well testing programs administered by Yakima County and the Department of Health. All that information relevant to the LYVGWMA was structured into layers of GIS-mapped information.


The WSDA's Nitrogen Availability Assessment (WSDA 2018) contained information about a number of sources of nitrogen that may be available to the groundwater in such a way as to contribute to a contaminated well. The nitrogen available from all those sources within gridded section were totaled and mapped. (Figure 26.) The USGS 2017 well test data was then mapped and laid atop the map of total nitrogen availability. (Figure 27.) Similar overlaid maps created include USGS well data over soil types, soil infiltration rates, irrigation canals and drains, cropping patterns, point sources, and septic system locations. (Figure 27-32.)

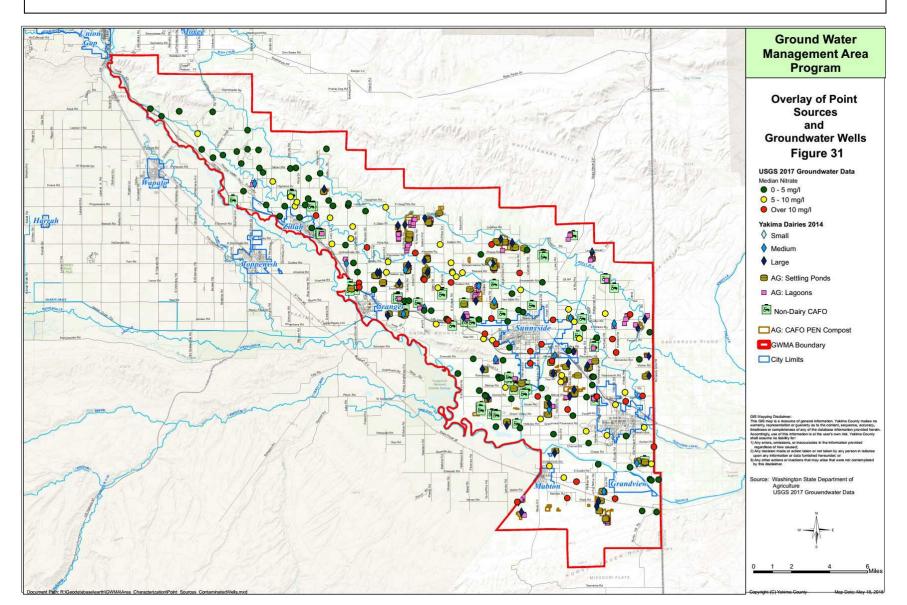



# FIGURE 26 - TOTAL NITROGEN AVAILABILITY

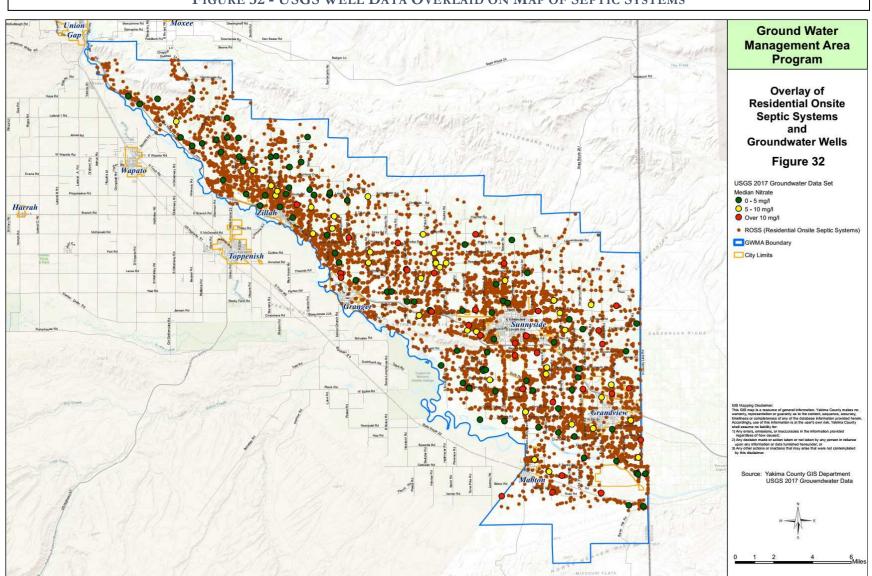



## FIGURE 27 - NITROGEN AVAILABILITY AND USGS WELLS




## FIGURE 28 - USGS WELL DATA OVERLAID ON SOIL TYPES SIMPLIFIED BY HYDRAULIC CONDUCTIVITY GROUPS




#### FIGURE 29 - USGS WELL DATA OVERLAID ON IRRIGATION CANAL AND DRAIN INFORMATION



## FIGURE 30 - USGS WELL DATA OVERLAID ON CROPPING PATTERNS



## FIGURE 31 - USGS WELL DATA OVERLAID ON MAP OF POINT SOURCES



## FIGURE 32 - USGS WELL DATA OVERLAID ON MAP OF SEPTIC SYSTEMS

Caution should be taken to distinguish between few source locations (as with other point sources, Figure 31) and many source locations (as with septic systems, Figure 32). The ratio of actual combined gross settling pond and lagoon capacity to actual gross septic system capacity, for example, is 132/1. There are 6022 septic tanks, 105 settling ponds, and 172 lagoons, respectively, within the GWMA. The gross settling pond capacity (8,596,140 gallons) is equivalent to the capacity of 8,596 individual septic tanks. The gross lagoon capacity (784,650,928 gallons) is equivalent to the capacity to the capacity of 784,651 individual septic tanks.

The average capacity of a septic tank when full is 133 cu. ft. (1,000 gallons); the average capacity of a settling pond when full is 81,868 cu. ft. (612,418 gallons); the average capacity of a lagoon when full is 609,840 cu. ft. (4,561,924 gallons). Not all of the relevant capacity is in use at any given time. These comparisons do not lead to reliable conclusions of relative contribution to ambient groundwater conditions.

While the broad distribution of septic systems throughout the GWMA suggest that they are a factor contributing to the ambient condition, and that some specific well contamination events may occur because of proximity to a specific septic system, caution should be taken when considering their relative total contribution of nitrogen available to the ambient groundwater system. See, Figure 22, Percentage of Total N Available by Source (WSDA) and Figure 23, Nitrogen Available by Specific Source.

It is difficult to compare particular sources directly, as they have different design and performance objectives. For example, septic systems are best sited in soils with high porosity (perc test required), settling ponds and lagoon systems are best sited in soils with low porosity (clays as impediment to flow).

All of the maps overlaid with USGS well data may suggest some correlation between source and effect. It is not suggested, however, that any is the sole cause of a given effect, nor that a particular combination of mapped data suggests any causative relationship. The distance between all potential sources inside a given radius of each of the USGS wells with greater than 10 mg/L nitrate has not been measured, nor has the geology, hydrogeology or water quality condition between them been analyzed.

# Description of Alternative Actions to Address the Problem

WAC 173-100-100 (4) requires that this Program include:

(4) An alternatives section outlining various land and water use management strategies for reaching the program's goals and objectives that address each of the groundwater problems discussed in the problem definition section. .... Each of the alternative strategies shall be evaluated in terms of feasibility, effectiveness, cost, time and difficulty to implement, and degree of consistency with local comprehensive plans and water management programs such as the coordinated water system plan, the water supply reservation program, and others....

WAC 173-100-100 (4) suggests that the Program may include, "if necessary, alternative data collection and analysis programs" with which to "enable better characterization of the groundwater and potential quality and quantity problems."

"the alternative management strategies shall address water conservation, conflicts with existing water rights and minimum instream flow requirements, programs to resolve such conflicts, and long-term policies and construction practices necessary to protect existing water rights and subsequent facilities installed in accordance with the groundwater management area program and/or other water right procedures."

In Yakima County, including the area within the LYVGMA, these subjects are being addressed through the Yakima River Basin Integrated Water Resource Plan (WBIWRP 2012).

The Groundwater Management Committee first made a list of some 300 potential alternatives, incorporating working group recommendations, ideas raised in working group conversations and reviews of scientific and environmental literature. [See Appendix G.] The GWAC first applied a "consensus" screen in order to reduce the large list of alternatives to those potential recommendations with which no one would disagree. This produced a

137

shorter list of 83 potential recommendations to be evaluated by the criteria established by WAC 173-100-100 (4). [See Appendix H.]

# Discussion of Pros and Cons of Alternative Actions

The GWAC first considered a lengthy list of ideas and thoughts that had surfaced throughout the several years of work group and GWAC meetings, particular recommendations made by working groups, or ideas derived from technical literature reviewed in preparation of this Program. The GWAC first removed from this list all those ideas where it was clear, through open meeting discussion, that consensus could not be reached. A spreadsheet was prepared listing all the remaining ideas. With respect to each, the feasibility, effectiveness, cost, proposed funding, timing, difficulty of implementation and consistency with Yakima County's Comprehensive Plan was estimated and set forth. (See Appendix H) This information was made available to all GWAC members prior to their final evaluation of the then-draft recommendations. Seventeen of the twenty-two primary GWAC members responded to a request to evaluate the draft recommendations, placing a value of -3 to +3 on each draft recommendation. The results were totaled. A unanimous consensus could not be obtained that the outcome of this method represented the consensus of the GWAC regarding its recommendations. The GWAC membership took a recorded vote at its May 17, 2018 meeting whether to recommend all draft recommendations which had received a total score greater than zero. The GWAC voted 17 - 1, 1 not voting, to recommend those draft recommendations. They appear below as "Recommended Actions." Those draft recommendations obtaining a total value of zero or less appear further below

#### Environmental Justice

An additional criterion with which to evaluate alternatives, other than those suggested by WAC 173-100-100, is "environmental justice." Environmental justice is the "fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations and policies." (Ex. Ord. 1994) Federal and state agencies seek to implement this policy. Because abatement of nitrogen contamination in drinking

water should have a positive effect for poorer, minority communities without alternative drinking water supply, alternatives that abate contamination should be considered favorably.

Discussion of environmental justice in LYVGWAC work group meetings led to argument about the applicability of the concept of environmental justice to the LYVGWMA groundwater problem.

The *Preliminary Assessment* (EPA 2010) found that the demographics of the Lower Yakima Valley require that final implementation of any or all the recommendations "takes into account, cultural, economic, and geographic factors." English is not the primary language (written or spoken) in many households in the Lower Yakima Valley. Prior outreach materials in Spanish and other languages were limited and focused for specific audiences and purposes (coliform boil water notices, nitrate advisories for high risk populations). When new materials are developed under any of the recommendations to address the specific needs of the Lower Valley residents, they should be written and delivered in a manner that is most likely to reach all residents of the LYVGWMA (see Interim Education and Outreach)

# **Recommended** Actions

The GWAC refined that list of alternatives (Appendix H) to the recommended actions set forth below. The parenthesized number following the recommendation represents the total of all values provided by GWAC members.

### Administration

#### Yakima County should:

ADM 1: Establish a Lead Agency responsible for implementation and oversight of the LYV GWMA Groundwater Management Plan and acquisition of stable funding to support their activities. (41)

Subject to state funding: Administer the Groundwater Quality Program. Administer funds and distribute to other entities by subcontract. Host the LYV GWMA website. Maintain a GIS data base on the GWMA.

<u>Environmental Protection Agency</u> and <u>WA Department of Ecology</u> should collaboratively:

ADM 2: Identify and support opportunities, including educational research institutions, for private, public, and industry investment in technology specific to addressing nitrate contamination in groundwater. (20)

Public Health and Safety

WA Department of Health, Yakima Health District, Yakima County should collaboratively:

PHS 1: Develop a bilingual, health-risk education and outreach campaign. (28)

Establish a public education program regarding nitrate pollution and health risk over a 5-10-year period. Partner with UW Pediatric Environmental Health Specialty Unit (PEHSU) to continue training local healthcare providers to recognize and address Nitrate risk in their patients (pregnant women and infants up to six months).

#### Residential, Commercial, Industrial, and Municipal

#### Yakima County should:

RCIM 1: Encourage municipalities within the GWMA to extend municipal sewer systems within urban growth areas and retire ROSS and LOSS., alternatively extend public water systems. Encourage connection of residences within urban growth zones to sewer systems extended by municipalities. (26)

#### RCIM 2: Perform an engineering study of water supply alternatives. (14)

Possible alternatives: 1) Discontinue use of contaminated shallow wells. Build new 1,500-foot community wells. 2) Rebuild, repair or replace poorly constructed wells. 3) Construct a potable water line from nearby developed area into deadhead water stations at central rural location (permit potable water collection at deadhead water stations). 4) Offer incentives to drill deeper wells or connect households on private wells near community water systems to connect to a community water system. (Nitrate Treatment Pilot Program-June 2011).

# RCIM 3: Develop an urban and hobby agriculturalist education and outreach campaign. (10)

Provide information targeted to small farm/hobby farm/ranchettes about manure management. Publish and distribute homeowner guides on proper septic system construction, operation, and maintenance. Educate the public, particularly in towns, about lawn and garden nitrogen applications' contribution to nitrate concentrations. Recommend against farming around a water well.

#### Yakima Health District should:

RCIM 4: Publish and distribute homeowner guide on how to maintain septic systems. (40)

RCIM 5: Study potential nitrate contamination attributable to improperly operated septic systems. (32)

Consider restoration/retrofit of older septic systems through incentives or county property tax breaks. Require nitrogen reducing technologies for onsite septic systems where appropriate. Assist hobby farmers to locate ROSS drain fields on their property so as to avoid animal farming over the drain field.

#### Municipalities should:

# RCIM 6: Provide funding for municipalities to replace aging sewer system infrastructure and ensure proper system maintenance to reduce nitrate leaching. (11)

Municipalities need to estimate costs and system integration.

#### WA Department of Ecology should:

## RCIM 7: Develop a plan for finding and decommissioning abandoned wells in the next 12 months, using the LYVGWMA as a pilot project. (23)

Educate the public regarding liability of an ill-secured well, and the importance of the integrity of wells, particularly those without a well log. Educate realtors and banking industry officials about disclosure of abandoned wells in property transfers. Compare Google Earth to GIS images to determine where building or usage changes indicate possible well usage changes. Focus first on hotspot high density areas in GWMA. Ground truth suspected problem wells. Offer incentives, for property owners to identify and properly abandon wells. Offer grant funding to Yakima Health District or professional engineers for well inspections and to assist in abandoned well decommissioning. Provide some form of protection for self-reporting of abandoned or improperly decommissioned wells.

#### WA Department of Health should:

# RCIM 8: Determine, prior to issuing or reissuing LOSS permits, that all employee counts are regularly reported. (19)

So that the LOSS will continue to operate as designed.

### Irrigated Agriculture

#### Washington State University should:

IA 1: Operate a mobile irrigation lab to assess the efficiency of current or advised irrigation practices, either through a singular lab or component parts. (25)

Inform farmers of the relative propensity of wheel lines, center pivots, and drip lines to cause leaching and that fertilization and supplemental irrigation beyond the optimum rate will not necessarily produce better yields or higher profits without serious side effects. Advise re corn and triticale water practices.

#### WA Department of Agriculture should:

IA 2: Design and implement pilot studies focusing on innovative farm techniques which reduce nitrogen loading to crops and monitor results. (34)

South Yakima Conservation District, WA Department of Agriculture, and WSU Extension Service should collaboratively:

IA 3: Create Irrigation Management Plans (similar to Nutrient Management Plans) for farms over a minimum size and provide financial assistance for implemented plans. (23)

Use available techniques to determine how much and when irrigation is needed instead of irrigating according to a prearranged schedule. Analyze irrigation practices to discover whether frequency or volume creates greater propensity for leaching. Manage sprinkler systems so they do not drive nutrients past the root system. Improve microirrigation system design and operation. Schedule water and nitrogen application according to the need for optimal crop yields. Monitor the timing of application of fertilizers to fields and how much water was then applied.

# IA 4: Encourage advanced irrigation management. Integrate management of synthetic /organic fertilizers and application of water. (31)

Recognizing that there is significant cost involved in changing an irrigation system, look for strategic opportunities where the use of more advanced irrigation management systems could have the greatest benefit for reducing nitrogen impacts to groundwater. One example of advanced irrigation management is electronic sensor irrigation water management (IWM). Identify federal, state and local incentive programs (like EQIP), such as grants, and low interest loans, to facilitate a transition to more advanced irrigation management in those areas. Provide financial assistance for 1) conversions from rill irrigation to sprinkler or drip irrigation, 2) installation of flow meters and moisture meters to reflect over-irrigation, high water table, drought conditions, 3) the cost of hiring third party sampling, measuring equipment, personnel or self-test kits, 4) management of sprinkler systems so they do not drive nutrients past the root system. Establish a voluntary irrigation management cost-share program from which data may be shared with the public.

# <u>Natural Resources Conservation Service</u> and <u>Department of Ecology</u> should collaboratively:

## IA 5: Provide financial assistance for implementation of Irrigation Management Plans. (32)

Details include: 1) conversions from rill irrigation to sprinkler or drip irrigation, 2) installation of flow meters and moisture meters to reflect over-irrigation, high water table, drought conditions, 3) the cost of hiring third party sampling, measuring equipment, personnel or self-test kits, 4) management of sprinkler systems so they do not drive nutrients past the root system.

<u>Department of Ecology</u> and <u>WA Department of Agriculture</u> should collaboratively:

IA 6: Make grants and allocate cost share funding or other funding assistance to people implementing environmental protection measures affecting groundwater quality. (17)

Assign personnel to investigate which environmental protection measures utilized by irrigated agriculturalists and livestock/dairy producers have positive influence on groundwater quality and explore means to share costs of implementing such measures. (Coordinated DOE, WSDA, Conservation District program). See NRCS Environmental Stewardship Program (2012). Also WCC, Voluntary Stewardship Program (Bill Isler), USDA Rural Community Assistance Group environmental program.

Livestock/CAFO

### WA Department of Agriculture should:

LC 1: Complete NRCS Technical Note 23 inspections on all waste storage ponds (lagoons) within the GWMA boundaries. (23)

LC 2: Identify and support opportunities, including education research institutions for private, public and industry investment in technology and management of fertilizers and manures, including separation of solid and liquid wastes. (17)

WSDA construct LYVGWMA administrative program.

LC 3: Develop strategies for marketing the economic, fertilizer value, and soil enhancing properties of appropriate application of manure and other livestock wastes. (18)

#### Producers should:

#### LC 4: Make capital improvements. (2)

Install liners in liquid waste storage lagoons. Install impervious surfaces beneath silage storage.

#### Washington State University should:

# LC 5: Continue research of water management with application of agricultural nutrients. (25)

Develop water sorption graph or chart. List volumes of water applied, soil types, infiltration rates, water holding capacity, absorption/compaction rates, depths to water, preseason and post-season appropriate moisture levels, evapotranspiration rates.

#### Washington State University and Producers should collaboratively:

#### LC 6: Integrate use of animal waste and synthetic fertilizer. (23)

<u>Research</u> chemical integration of animal waste and synthetic fertilizers with objective of balancing nutrient application amounts in order to maximize crop production and full nitrogen uptake.

# <u>US Department of Energy</u> and <u>US Department of Agriculture</u> should collaboratively:

LC 7: Explore investment in animal and agricultural waste to energy technology. (22)

Explore state of technology, economic viability, return on investment (national corporate research & development/ governmental incentives).

<u>WA Department of Agriculture</u> and <u>Washington State University</u> should collaboratively:

LC 8: Quantify the nutrient value and rate of release of nitrate from livestock waste under various Lower Yakima Valley conditions to become part of nutrient management guidelines. (19)

Washington Conservation Commission should:

LC 9: Identify and support opportunities, including education research institutions for private, public and industry investment in technology and management of fertilizers and manures, including separation of solid and liquid wastes. (26)

South Yakima Conservation District, WA Department of Agriculture, Washington State University, Private Industry and Producers should collaboratively:

LC 10: Educate producers regarding application of nutrients at Agronomic Rate. (30)

Develop technologies and provide information about improvements made in nutrient management and agronomic rate application of fertilizer by specific developing technologies.

Recommendations for Irrigated Agriculture and Livestock CAFO Together

<u>Washington Conservation Commission</u>, <u>WSU Extension Service</u>, <u>WA</u> <u>Department of Agriculture</u>, <u>Department of Ecology</u>, <u>Yakima County</u>, <u>South Yakima</u> <u>Conservation District</u> and <u>Ag Industry Associations</u> should collaboratively:

IALC 1: Develop a post-GWAC agricultural producer education and outreach campaign. (36)

Create a broad-based advocacy group (e.g., regulatory agencies, AG industry associations such as the Farm Bureau, Dairy Federation, hop growers, wine grape growers and producers) to carry out the educational components. Create a central repository (e.g., website) of agricultural information that provides technical assistance to growers and producers, provides education on nitrate, and identifies BMPs specific to each local agricultural industry. Address consequences of too much irrigation. Technological improvements in irrigation that permit easier management of water. Descriptions of specific improved technology. Economic viability of technological advancements BMP implementation, irrigation water management, soil nutrient management and manure management and application.

Elements could include: encourage commodity groups to provide education on water management and fertilizer use through regular meetings; distribute information to producers on what can happen with applied nitrogen, what should be applied and reasonable, agronomic rates of application; encourage agencies and subject matter experts to make presentations at trade shows; ask agricultural consultants to share the latest BMP developments with their clients; increase livestock operators' awareness of the need for procedures for proper management of animal wastes and wastewater; provide producers with information on funding sources (e.g., industry, government, educational institutions, industry associations etc.) that will improve their ability to apply BMPs; enlist partners (Farm Bureau/federations/ associations) to host workshops/ informational meetings regarding GWMA goals and recommendations.

#### Washington Conservation Commission should:

IALC 2: Fund SYCD, through State Conservation Commission budget, for projected educational, administrative, nutrient management planning, engineering, cost share, and lending activities. (39)

South Yakima Conservation District and Washington Conservation Commission should collaboratively:

IALC 3: Establish a local forum for disseminating information and facilitating technical exchange regarding best management practices (BMPs) for irrigated agriculture and livestock management and groundwater protection. (36)

Prepare a fact sheet/develop outreach campaign to growers that explains agronomic rates, applying nutrients at the right time/right place/right amount. Endorse and distribute materials that will educate producers about the facts related to all fertilizer types, including livestock waste and the science of groundwater protection.

## <u>WA Department of Agriculture</u> and <u>South Yakima Conservation District</u> should collaboratively:

IALC 4: Inform farmers of those BMPs prioritized by Livestock/CAFO and Irrigated Agriculture Work Groups to reflect greatest effectiveness in nitrate reduction. (25)

Focus implementation of BMPs based on information and data included in the Nitrogen Availability Assessment, Soil Sampling Program, Ambient Groundwater Monitoring Plan, USGS Reports, and other similar scientifically based publications. GWMA: Publish lists as appendices to GWMA Program. WSDA: Adopt regulations listing Lower Yakima Valley GWMA-specific BMPs; Determine who implements each BMP and who monitors it. Determine the time frame in which to measure/monitor each BMP. SYCD: provide farmer-specific consultation.

IALC 5: Encourage appropriate use of surface banding ("dribbling," "stripping" of liquid fertilizer, "broadcasting" or prompt incorporation of manures and fertilizers after application to cropland. (18)

Broadcast is effective for corn, alfalfa, triticale. Incorporation should occur within 24 hours.

IALC 6: Continue to provide underlying soils information to individual livestock operations, provide same for all irrigated agriculture. (25)

So that individual property owners can evaluate contamination potential, already in DNMP process.

Data Collections, Characterization, Monitoring

<u>Department of Ecology</u>, <u>Yakima County</u> and <u>Yakima Health District</u> should collaboratively:

DATA 1: Establish or maintain ongoing, extended funding necessary for the Yakima County Department of Public Services and the Yakima Health District to actively participate in water quality improvement, testing, monitoring, scientific data analysis, and infrastructure development. (35)

Collect data to track water quality improvement progress and nutrients generated, applied, or exported within the LYV GWMA. Generate data through soil testing, Ambient Groundwater Monitoring Plan implementation - including purpose built and existing wells, sampling of liquid and solid waste to be field applied, composted, or exported, the CAFO General Permit, and tracking nutrients applied by non-dairy operations. Collect, analyze, and interpret data to track water quality improvement progress, nutrients imported, generated, applied, or exported, which will inform the implementation of an Adaptive Management Plan within the LYV GWMA.

South Yakima Conservation District and WA Department of Agriculture should collaboratively:

# DATA 2: Monitor changes occurring in agricultural operations. Evaluate whether those changes positively affect improvement in groundwater quality. (25)

Requires cooperation of producers & landowners, multi-year effort to account for crop rotation, dry vs. wet years, changing technology, decades to monitor groundwater quality change. WSDA: prepare report to Legislature and Department of Ecology.

#### Yakima County should:

#### DATA 3: Adopt and Implement an Adaptive Management Plan. (22)

Utilizing data collected, progress made, or lack of progress, to inform the community on adjustments that need to be implemented. Plan would incorporate necessary adjustments to availability of technology, education and outreach, tracking exports, land use regulations, treatment systems, and other changes to inform decision makers regarding management changes necessary for a successful Program.

#### South Yakima Conservation District should:

DATA 4: Establish a multi-year Deep Soil Sampling Program where farmers subscribe for a duration with pre-determined fiscal remuneration for completed sampling. Cost share with farmer. Farmer to provide checklist indicating performance with BMPs. Test throughout growing year, in order to observe effects of fertilization throughout year. Share data with public. (25)

Farmers would subscribe for a duration with pre-determined fiscal remuneration for completed sampling. Cost share with farmer. Farmer would provide checklist indicating performance with BMPs. Testing would occur throughout growing year, in order to observe effects of fertilization throughout year. Data grossly accumulated would be shared with public without attribution to individual farmers. Anecdotal results of deep soil sampling carried out by SYCD with farmers with pre-existing relationship with SYCD were informative. Word-of-mouth reporting within farmer community greatly increased acres sampled.

#### Department of Ecology should:

DATA 5: Analyze the trends of nitrate data contained within reports required by NPDES and SWD permits. (23)

#### Department of Ecology and WA Department of Health should collaboratively:

## DATA 6: Establish time-based performance objectives against which wellmonitoring data can be compared. (16)

E.g., number of at risk wells, BMP implementation, funding success, reduction in number of underperforming farming practices. Use both method-based measurement and performance-based measurement.

#### Yakima County should:

#### DATA 7: Install Ambient Groundwater Monitoring Wells. (42)

Monitoring well construction: Monitoring well data collection:

#### Yakima Health District should:

DATA 8: Collect data from Ambient Groundwater Monitoring Wells. (42)

Study short-term seasonal variations in nitrate concentrations over next year or two-addresses effects of changes in nutrient application over the agricultural cycle. Study longterm trends that develop over several years--to track whether time-based performance objectives are being met.

#### **Roza-SVID Joint Board of Control** should:

#### DATA 9: Monitor nitrate concentrations of irrigation water at headgates. (35)

Report nitrate concentrations annually to Department of Ecology.

#### Yakima County should:

DATA 10: Contract with USGS to collect data from water well system per 2017. (28)

DATA 11: Contract with USGS to do particle tracking model study to indicate where groundwater moves faster (permeability). (9)

USGS Particle Tracking Model Overview--potentially combined with MT3D MODFLOW application to the vadose Zone.

WA Department of Agriculture, Department of Ecology and Yakima County should collaboratively:

DATA 12: Assess Nitrogen Loading. Building from the WSDA's Nitrogen Availability Assessment, develop a Nitrogen Loading Assessment for all agricultural, residential and commercial properties, using newly collected data. (5)

Hire a technical consultant to conduct a literature review to determine the most relevant information and accurate factors for use in the Nitrogen Loading Assessment. Periodically repeat the grower survey used in the NAA to compare against currently established data. Collect data on how many acres in the GWMA are fertilized in various crops with manure and/or commercial fertilizer. Update and monitor the percentage of acreage in various crops, particularly silage corn and field corn. Study effect nitrogen contribution from cover crops. Determine acreage for triticale. Discover commercial fertilizer tonnage for Yakima County and/or for GWMA. Explore how much nitrogen leaches into groundwater from drains and wasteways. Study atmospheric deposition more comprehensively. Understand the difference between plant uptake and plant removal of nitrogen. Ask EPA to use its CMAQ model, or other tools, to estimate emissions of reactive nitrogen - gaseous nitrogen oxides (NOx), ammonia (NH3), nitrous oxide (N2O), the anion nitrate, NO3,- from animal agriculture, manure and fertilizer applications. Use this to inform the nitrogen balance data base and refine estimates of atmospheric deposition.

### Regulatory Framework

# Environmental Protection Agency, WA Department of Agriculture and Department of Ecology should collaboratively:

#### **REG 1:** Streamline current regulatory enforcement activities. (25)

Improve customer service and protocols, increase clarity of process, escalate enforcement for facilities not following management practices, identify methods to discourage repeatedly unfounded complaints, and improve overall transparency.

#### Department of Ecology should:

#### REG 2: Inspect, monitor and regulate stockpiled manures. (1)

Coordinate with WSDA. Currently being done; currently required as part of dairy nutrient management plans.

REG 3: Review applications for and issue exemptions for agricultural composting operations in a manner that protects public health and the environment, as required by state rules and regulations. (12)

REG 4: Provide assistance to local departments of health regarding the regulation of agricultural composting operations. (7)

#### WA Department of Agriculture should:

REG 5: Document and publish regulatory compliance for dairies within the GWMA that are completing and implementing Dairy Nutrient Management Plans (DNMP). (7)

Explore the possibility of disclosing non-proprietary data produced through the DNMP process. Summarize the DNMP reporting and provide information that would disclose the amount of manure the CAFO's in the GWMA create and where it is distributed.

#### Yakima Health District should:

REG 6: Issue permits for agricultural composting operations, to appropriately inspect composting operations and to enforce regulations that protect public health and the environment, per WAC 173.350.040. (4)

# REG 7: Require new developments outside towns to address potential impacts on groundwater quality. (19)

Work with Yakima County Planning and Building Divisions' permit program to identify methods of permitting while reducing impacts to groundwater.

### Yakima County should:

REG 8: Require new developments to address potential impacts on groundwater quality. Limit new development utilizing septic system where soil filtration rate is high, where housing density is already big, where nitrate concentration is already great downstream of the septic plume. Consider the nitrate density element (# of systems per-area) when approving proposed septic systems in order to reduce the nutrient nitrogen in domestic wastewater discharged from OSS. (15)

Recommendations for conditions on issuance of building permits. Determine "density" evaluation criteria. Including those technologies verified by the U.S. EPA's Environmental Technology Verification Program: fixed film trickling filter biological treatment, media filter biological treatment, and submerged attached-growth biological treatment. Recommend use of anaerobic digestion in waste storage lagoons as a best management practice.

#### South Yakima Conservation District and Ag Producers should collaboratively:

REG 9: Develop and implement Nutrient Management Plans for all farmers. (19)

Mandatory or Voluntary. Farming operations currently are not required to hold permits or a prepare a Nutrient Management Plan.

#### WA Department of Agriculture should:

REG 10: Amend the Dairy Nutrient Management Act to extend WSDA's authority to manure application on properties other than those owned by dairies, provide more complete disclosure of Nutrient Management Plans. (8)

Draft Recommendations Obtaining a Total Value of Zero or Less

#### The Washington Legislature should.

# Make shallow (1, 2, 3 foot) soil testing reports prerequisites for funding, lending or building permits. (0)

In the nature of Phase I Environmental Audits. Makes nitrate-related information / data available for water quality management.

### WA Department of Health should.

#### Revise WAC 246-203-130 (keeping of animals) (-1)

So that it includes specific and enforceable requirements designed to protect health.

#### WA Department of Ecology should.

# Require facility process improvements in waste treatment and food processing plants to reduce nitrogen and total discharge volume. (-3)

Addressed by Department of Ecology General Permit for Food Processing, specific problems can be addressed through "special protection areas," WAC 173-200-090.

#### WA Department of Ecology and WA Department of Agriculture should.

### Improve composting regulations (statutory) (-4)

Unclear as to particular regulations proposed.

#### WA Department of Agriculture should.

Establish a monitoring system for compliance with NRCS Standard 317 on new composting facilities at Washington dairies (phased in for existing facilities). (-4)

WA Superintendant of Public Instruction and Educational Service District 105 should.

Develop educational materials that could be elected by instructors at 8-12 levels about aquifer protection, groundwater and best management practices. (-6)

The Washington Legislature should.

Require commodity commissions to dedicate "check off" money for research and development in water quality technology and practices. (-7)

WA Department of Ecology, Yakima Regional Clean Air Agency and WA Department of Agriculture should.

Estimate emissions of reactive nitrogen—gaseoous nitrogen oxides (NO<sub>x</sub>), ammonia (NH<sub>3</sub>), nitrous oxide (N<sub>2</sub>O), the anion nitrate (NO<sub>3</sub>)—from animal agriculture, manure and fertilizer applications in the Lower Yakima Valley. (-33)

Use this to inform the nitrogen balance data base for the GWMA area and refine estimates of atmospheric deposition.

WA Department of Ecology and U.S. Environmental Protection Agency should.

Study the relationship between nitrogen emissions and atmospheric deposition of reactive nitrogen. (-37)

Develop a model that predicts what percentage of emissions return to the GWMA area as atmospheric deposition.

# Implementation Work Plans

Parties Responsible for Implementation of the Recommended Actions

The parties responsible for implementation of the recommended actions include:

- Yakima County
- Washington State Department of Ecology
- Washington State Department of Agriculture
- Washington State Department of Health
- Washington State Conservation Commission
- South Yakima Conservation District
- Washington State University Extension Service
- Agricultural Producers

The LYVGWMA did not develop a "detailed work plan for implementing each aspect of the groundwater management strategies as presented in the recommendations section" as recommended by the general framework guidelines listed in WAC 173-100-100

## Yakima County as "Lead Agency"

The LYVGWAC recommended by a vote of 14-1, 1 abstention, 1 not voting, at the May 17, 2018 meeting that Yakima County act as "lead agency" in future Lower Yakima Valley groundwater management programs. The County's activity as lead agency would be subject to available funding from the State of Washington.

As the Lower Yakima Groundwater Management Area's Lead Agency, Yakima County may perform any of the following functions, subject to available funding:

- Seek and administer funding for the accomplishment of recommendations made by the final GWMA Program.
- Encourage the Washington State Departments of Ecology, Agriculture and Health, the Yakima Health District, the South Yakima Conservation District, and Washington State University to perform those activities recommended by the final GWMA Program.
- Host the GWMA website. Maintain a GIS data base on the GWMA.

- Participate in educational activities in partnership with the South Yakima Conservation District, Departments of Ecology, Agriculture or Health in a manner consistent with GWMA recommendations.
- Install ambient groundwater monitoring wells and arrange for data collection from those wells.
- Collect data to track water quality improvement progress and nutrients generated, applied, or exported within the GWMA.
- Describe the characteristics or volume of groundwater.
- Analyze nitrogen availability periodically, at least equivalent to WSDA 2018, in order to compare and contrast changes over time.
- When appropriate, call upon citizen involvement in decision making.
- Report at least triennially on the status of groundwater quality within the LYGWMA.
- Recommend strategies to the Yakima County Commission, Ecology, Agriculture consistent with the GWMA Program, by which to mitigate adverse effects to groundwater quality within the GWMA.
- Develop and implement an Adaptive Management Plan within the GWMA.

Schedule For Implementation Of The Recommended Actions

Those recommendations based upon the implementation of best management practices by agricultural producers should begin immediately.

Those recommended actions that depend upon the availability of public funding will likely require one-two years' lead time to secure that funding prior to their implementation.

Those recommended actions that collect data over time, including the proposed Ambient Water Quality Monitoring Well Program, or voluntary Deep Soil Sampling Program, will be implemented over a multi-decade time span.

Monitoring System For Evaluation Of Effectiveness Of Recommended Action

The Ambient Water Quality Monitoring System is intended to be comprised of at least 30 randomly placed, water-table elevation groundwater quality monitoring wells. Data from these wells will be collected sufficiently often to track seasonal variation and general water quality over time.

# State of Oregon Workplan: Protecting Public Health from Nitrate Exposure in the Lower Umatilla Basin Ground Water Management Area

## Background

In accordance with Oregon's Groundwater Quality Protection Act of 1989, the Oregon Department of Environmental Quality (DEQ) and the Oregon Department of Agriculture (ODA) declared the Lower Umatilla Basin a Groundwater Management Area (LUBGWMA) in 1990 because regional nitrate-nitrogen concentrations exceeded 7 milligrams per liter (mg/L). This area encompasses Hermiston, Boardman, Irrigon, Stanfield, Echo and surrounding areas in Morrow and Umatilla counties. An interagency group formed after the GWMA declaration conducted a four-year hydrogeological investigation to determine the extent and potential sources of contamination. The identified sources of excess nitrate in groundwater included fertilizers, septic systems, wastewater treatment effluent, animal wastes, industrial wastes, and food processing waste waters (source: LUBGWMA, <u>https://lubgwma.org/</u>).

Exposure to high nitrate and nitrite concentrations in drinking water can cause methemoglobinemia (decreased ability of the blood to carry oxygen to tissues), which is a serious health concern for infants and pregnant or nursing women. Related symptoms include decreases in blood pressure, increased heart rate, headaches, abdominal cramps, vomiting and in some cases death.

At the national level, research has found "relatively high nitrate concentrations...in some privately owned wells with shallow depths and permeable soils. Drinking of water from such sources, combined with nitrate intake from the diet, may result in overexposure to nitrate in some individuals."<sup>1</sup> The Oregon Health Authority (OHA) estimates there are approximately 4,500 domestic wells in the LUBGWMA, serving an estimated 12,000 household members.<sup>2</sup> The demographics of the area tend to be, compared to the state, more ethnically diverse (Hispanic: Umatilla 28%, Morrow 38%, Oregon 13%), higher representation of American Indian/Alaska Native populations (Umatilla 4.3%, Morrow 2.5%, Oregon 1.8%) and with a higher poverty rate (persons in poverty: Umatilla 13.9%, Morrow 12.7%, Oregon 11.4%) (source: US Census Bureau,

https://www.census.gov/quickfacts/fact/table/morrowcountyoregon,umatillacountyoregon,OR/PST045 219).

Oregon's groundwater quality protection program consists of several programs spread among different state agencies. Four state agencies, OHA, DEQ, ODA and the Oregon Water Resources Department (WRD) implement the majority of federal and state programs relating to groundwater. OHA is the primacy agency administering and enforcing drinking water quality standards for public water systems

<sup>&</sup>lt;sup>1</sup> Agency for Toxic Substances and Disease Registry. 2017. Toxicological Profile for Nitrate and Nitrite. Accessed 12/07/2021 at <u>https://www.atsdr.cdc.gov/toxprofiles/tp204.pdf</u>.

<sup>&</sup>lt;sup>2</sup> OHA developed this estimate by overlaying the DEQ LUBGWMA boundary on Oregon WRD-provided domestic well locations and estimating household size as 2.7 members which is a rounded from Umatilla and Morrow County rates.

(PWS) under the Safe Drinking Water Act (SDWA) and Oregon law. PWSs are required to monitor, report results and, where necessary, treat water to ensure nitrates in drinking water do not exceed Maximum Contaminant Levels (MCLs). Several PWSs in the area have been impacted by nitrate contamination in the past and have had to either install treatment or drill deeper wells. Currently, all but one PWS in the LUB GWMA are meeting MCL requirements for nitrates.<sup>3</sup> DEQ is responsible for implementing a range of programs that may directly or indirectly affect groundwater quality (including wastewater permitting, onsite septic management, underground injection control, water reuse, biosolids management, hazardous waste, cleanup and tanks programs), and also is responsible for overseeing the implementation of the state's Groundwater Quality Protection Act and rules. DEQ's laboratory provides monitoring support to many program areas relating to groundwater, including groundwater monitoring for the Groundwater Management Areas.

Nitrate challenges in the Lower Umatilla Basin come from a variety of sources and have included contributions from industrial land application and confined animal feeding operations. The LUBGWMA was established, as required by Oregon statute, to allow for the identification and implementation of practices that will reduce nitrate loading and reduce groundwater nitrate concentrations below 7 mg/L. To accomplish such tasks, the LUBGWMA Committee was formed and is composed of local area residents and governments representing a broad range of interests within the local area and basin. Under statute, several additional agencies are required to be involved, including Morrow & Umatilla County and city planning agencies, DEQ, OHA, WRD, ODA, and Oregon State University's (OSU) extension agricultural research center. Umatilla and Morrow County Soil and Water Conservation Districts (SWCDs) are also involved. Morrow SWCD is designated the lead agency for developing and implementing the Second Local Action Plan.

Sampling efforts in the LUBGWMA have included initial reconnaissance sampling, regular sampling, synoptic events, and real estate transaction data that have included public water supply systems, domestic drinking water wells, monitoring wells from cleanup sites and permitted facilities, industrial, and irrigation wells. These data show varied nitrate levels from non-detect to elevated concentrations above the MCL of 10 mg/L. While these data are not exhaustive, they can provide insight into areas of concern that are the focus of the actions described by OHA and additional actions described by DEQ and ODA.

Based on historical sampling efforts of private drinking water wells in the area primarily for nitrate and due to limited regulatory authority over private drinking water wells in Oregon, local and state agencies have recommended installation of resin or reverse osmosis based systems to remove the contaminants from households. Some limited households have installed these systems, but complete data are not available. At least 2 of the 30 wells DEQ monitors have these systems.

In addition, concurrent with work on nitrates in the LUBGWMA, state agencies and EPA worked on perchlorate concerns in the area in early to mid 2000's which led to some analyses and evaluations addressing both contaminants, including DEQ and EPA's CERCLA programs conducting a Preliminary Assessment/Site Investigation of the area for perchlorate. As part of that work, EPA, DEQ and others

<sup>&</sup>lt;sup>3</sup> The one exception is the Hat Rock State Park, where the treatment system recently failed. The Park is currently closed for the season and the ranger is provided with bottled water until the treatment system can be corrected.

conducted a study to test the effectiveness of the reverse osmosis treatment systems for removing both nitrate and other contaminants such as perchlorate.

The Local Advisory Committee convened as part of the Groundwater Management Area designation and process has developed two action plans to identify voluntary practices that will reduce nitrate loading and reduce groundwater nitrate concentrations. The First Action Plan was developed in December 1997. The Second Action Plan, finalized in October 2020, identifies and relies upon voluntary actions that will reduce groundwater nitrate concentrations while sustaining this reduction so that public and private drinking water remains safe to drink.

The sections below describe work that OHA will do supported by additional actions on the part of DEQ and ODA to carry out public health interventions to reduce human exposures to nitrates in domestic well water in LUBGWMA.

## I. OHA Workplan Components

Oregon's goal is to eliminate LUBGWMA domestic well water consumer exposure to high nitrates, which under the federal Safe Drinking Water Act is defined as a level above 10 mg/l. While efforts are underway to reduce the introduction of nitrates into the groundwater, additional efforts are needed to protect public health from exposure to elevated nitrates in domestic well tap water. This can be accomplished through enhanced outreach and education, increased domestic well sampling and, where necessary, point of use or whole house domestic water treatment or substitution with bottled/trucked water. OHA has identified four elements of a workplan to accomplish this goal. The "Implementation Resources and Needs" section discusses opportunities and constraints to implement these workplan elements based on anticipated staff and financial resources.

- A. <u>Outreach and education.</u> Conduct an outreach and education program with development of culturally and linguistically accessible materials targeting low-income households, including people of color and vulnerable communities. This would include local outreach and education support from (and resources to) local public health authorities, community-based organizations (CBOs), non-governmental organizations (NGOs) and possibly the Yellowhawk federal tribal health center on the Confederated Tribes of the Umatilla Indians reservation. Once the program coordinator position is filled (projected for spring 2022), a two-phase outreach and communications plan can be developed to first (Phase 1) harness currently available materials and partnerships. This first phase could begin in summer 2022. Given grants resources detailed below, Phase 2 development of new outreach materials by partners in conjunction with community members could commence by winter 2023. This recognizes that new legislatively approved resources would not be available until late summer 2023 and time would be needed to develop and execute mini grants. These materials would be ready to incorporate in outreach events and activities by fall 2024.
- B. <u>Hazard assessment.</u> Conduct a detailed hazard assessment of available nitrate data for LUBGWMA wells and demographic analysis of affected communities. Once the new environmental epidemiologist position is filled (projected for spring 2022), this project would assume primary importance and could be performed using currently available data, to be

completed by the end of calendar year 2022. Collection and incorporation of new data into the hazard assessment would come later.

- C. Domestic well water screening, testing and interpretation. Hold community screening events for well owners to bring sample jars of water for onsite evaluation to indicate whether follow up testing is needed. OHA will provide testing vouchers or fund access to well water testing for nitrates, ideally as part of an expanded scope that includes lead, bacteria and arsenic. OHA will also provide educational support to interpret test results and provide guidance to well users. OHA will facilitate and coordinate resources to local and tribal public health authorities and local CBOs and NGOs to partner in these actions to ensure successful uptake of domestic well testing resources. Commencement and activities for this component could commence in fall of 2023, however, are dependent upon availability on outreach and education resources in component (A) and on additional resources needed to conduct community screening, and partnerships with outreach partners and contracts with environmental laboratories. OHA will request these resources for this component as part as a policy option package to the Oregon Legislature in spring 2023. Availability of federal grants or funding could supplement these resources and activities could commence sooner dependent on completion of the health hazards component in (B).
- D. For well users with test results indicating high levels of contaminants, offer relief in the form of bottled/trucked potable water, installation and maintenance of water treatment systems or connection to nearby community water systems. Given availability of water testing results as well as contract resources detailed below, these activities could commence in fall or winter 2023.

### II. OHA Implementation Resources and Needs

There are currently very limited OHA resources allocated to addressing domestic well concerns in Oregon. Additional staff, pass-through funding to partners and contractual support for environmental laboratories and water treatment professionals are needed to successfully fulfill this workplan. Needed resource considerations, and the status of each, include:

- A. Staffing:
  - a. <u>Domestic Well Safety Program Coordinator</u>- A program coordinator (Program Analyst 2) would lead implementation of the workplan, including guiding outreach development and delivery, develop and track grants and contracts, coordinate and or conduct data entry, and meet program administrative requirements. OHA lost federal Centers for Disease Control funding for this position in August 2020. The OHA's Public Health Division, Environmental Public Health Section (EPH) recently received approval to use short term (through June 2023) state funding to recruit and fill the position on a limited duration basis. Based on available funds coordination, Phase 1 outreach and education activities (component (I)(A Phase 1) will occur through June 2023. OHA plans to request a permanent, state-funded position from the 2023 Oregon Legislature.
  - b. <u>Environmental Epidemiologist</u>- OHA has new permanent funding from the 2021 legislative session and is currently actively recruiting for an environmental

epidemiologist (Epidemiologist 2) to conduct the detailed hazard assessment and demographic analysis to support LUBGWMA work as indicated in component (I)(B).

- B. <u>Grants and contracts</u>: OHA would need to obtain funding to accomplish the following activities. Absent federal funding, OHA plans to request funding support for these activities with a legislative request in spring 2023:
  - a. Provide mini grants for local and tribal public health authorities and local community based and nonprofit organizations to develop and deliver culturally and linguistically accessible outreach and education materials (workplan component (I)(A Phase 2)), hold outreach events (including rapid colorimetric nitrate tests) and support local domestic well users in navigating the process of testing and treating domestic well water (workplan component (I)(C).
  - b. Contract with accredited environmental laboratories to provide domestic well testing free of charge to consumers (workplan component (I)(C).
  - c. Contracts for alternative sources of water for consumers in the form of bottled/trucked potable water, and installation and ongoing maintenance of water treatment systems (workplan component (I)(D). Coordination of state and local agency resources would also be conducted to provide alternative sources of drinking water. Relief in the form of connection to nearby community water systems would require negotiation of terms with those systems.
- C. <u>Other services and supplies:</u> Resources are needed to operate and maintain staff travel expenses, telecommunications, databases and applications.

OHA plans to submit a Domestic Well Safety Program funding request (Policy Option Package, or POP) to the 2023 Oregon Legislative Session. That POP would include request for position authority and funding for a permanent Program Analyst, funding for grants to local partners and contracts for services and supplies described above. In addition, OHA will seek to identify federal grants that might fund additional program activities.

### III. DEQ Workplan Components

- A. <u>Ongoing Activities:</u> DEQ continues to help facilitate the LUBGWMA local advisory committee as the lead state agency on implementation of the Second Action Plan. In this plan, the committee describes plans to develop nutrient and irrigation best management practices and guidelines. The committee also plans to pursue a United States Geological Survey (USGS) led effort to study, characterize, and develop a comprehensive groundwater and hydrology transport model for the Lower Umatilla Basin. Additional activities that DEQ is currently involved in include:
  - a. Permitting of sources with the potential to discharge nutrients that could affect groundwater:
    - DEQ's regulatory waste discharge permits are designed to reduce nitrate loading to the groundwater from various potential sources, including food processing industrial wastewater discharges and large-scale septic systems, and

will continue to do so. DEQ is reviewing permits as they are renewed to evaluate conditions and land application practices to ensure requirements reflect land application at agronomic rates with focus on areas where we believe there are higher levels of nitrates in groundwater and where domestic wells are present.

- ii. DEQ provides oversight of solid waste permits which includes split sampling at regional landfills and other potential sources for groundwater impacts.
- b. DEQ provides on-going groundwater monitoring activities which includes sampling, analysis, and reporting from a representative well network (~30 sites per event).
- c. DEQ and EPA are providing direct oversight of the Umatilla Depot Superfund restoration activities including operating a groundwater pump and treat system to reduce nitrate sources.
- d. DEQ's groundwater, state revolving fund (SRF) and aquifer storage and recovery/aquifer recharge (ASR/AR) programs continue to work with regional stakeholders on water supply infrastructure projects, many of which include utilization of Columbia River water during the winter in an effort to dilute nitrate concentrations within groundwater.
- e. DEQ facilitates the use of financial incentives to encourage the use of technologies that reduce nitrate contributions from septic systems to groundwater, including promoting Clean Water Loans and the new onsite septic financial aid program offered through DEQ to make repairs more affordable as described in the Second Action Plan and in the following section.

#### B. Additional/Pending Activities:

- a. DEQ will evaluate available data (recent and historic) to provide consultation and support to OHA as they develop targeted outreach and testing efforts described under Items II. A-C of this workplan. Specifically, DEQ will use available data and mapping to make recommendations on where to focus outreach and sampling efforts within the LUBGWMA to address areas of greatest risk for potential private drinking water contamination.
- b. DEQ is providing onsite septic system resources to assist with repair and replacement of onsite septic programs with an emphasis on low/moderate income households. Two types of resources will be available in 2022:
  - i. Onsite septic system loan program (administered via Craft3, a non-profit Community Development Financial Institution)
  - ii. An additional financial aid program will be developed and funded through a \$15M ARPA appropriation, that may provide grants, in addition to loans, for low/medium income households to address repair or replacement of failing onsite septic systems.

c. Pursue funding and legislative concepts in 2023 that would support enhanced DEQ capacity for groundwater monitoring to support efforts to characterize water quality conditions and changes over time, and staffing to support groundwater assessment, SRF projects, water quality permitting, and agronomy work.

### IV. ODA Workplan Components

### A. Ongoing Activities, Confined Animal Feeding Operations Permit Program:

ODA and DEQ operate the Confined Animal Feeding Operations (CAFO) Permit Program, including groundwater protections through CAFO National Pollutant Discharge Elimination System (NPDES) and Water Pollution Control Facility (WPCF) water quality permit programs through a MOU (7-2021) that describes each agency's roles and responsibilities. ODA currently lists 13 permitted CAFOs in the LUBGWMA. All 13 are registered to an NPDES CAFO Permit with five facilities on Individual CAFO NPDES Permits and eight facilities registered to the No. 1-2016 CAFO General NPDES Permit. All the Individual Permit holders are large CAFOs. For the General Permit registrants, one is small, one is medium and six are large CAFOs.

- a. The existing CAFO permitting program provides robust, comprehensive oversight of the CAFOs requiring permit coverage in the LUBGWMA. ODA and DEQ jointly issue CAFO Individual and General Permits that prohibit any nutrient discharge to surface or ground waters of the state and contain a numeric effluent limit of zero (0) mg/l of nitrate (subject to lab quantitation limits).
- b. The permits also require an ODA-approved Nutrient Management Plan that details how all nutrient applications from all sources will conform with ODA-approved agronomic rate calculations and permit conditions.
- c. The large, individually permitted CAFOs all have groundwater monitoring wells required by their permits. All permits require extensive permittee inspections, sampling and record keeping documenting compliance. ODA conducts routine inspections at a minimum of one every 10 months and more frequently on the larger, individual permitted facilities.

### A. Additional/Pending Activities:

- a. ODA will continue to work with DEQ to make changes to CAFO permits as they are reviewed, or as new applications are received for the LUBGWMA. Current permit changes being implemented in the LUBGWMA are as follows:
  - i. Require surveillance nitrate sampling for all drinking water wells located on the respective CAFOs.
  - ii. Require any new Large Tier I or II CAFO or existing CAFO implementing changes that would create a new Large, Tier II CAFO to undergo a two-step permitting process. In step one, upon receipt of a complete application and design package and completion of the public notice and participation process, the agencies would grant approval to construct the new or expanded CAFO facilities. As part of the

public participation process ODA has increased its outreach by engaging the Environmental Justice Task Force as well as reaching out directly to the nine federally recognized Tribes of Oregon. In step two, once the new or expanded facilities are constructed, they must be inspected for operability and approved prior to occupation and operation.

- Require any new or substantially modified earthen manure and process wastewater storage facility to have a double layer synthetic liner with a leak detection system.
- b. There are a group of other livestock and irrigated agriculture operations located in the LUBGWMA that are defined as non-point sources and are regulated by ODA's Agricultural Water Quality Program (AGWQ). The AGWQ program has supported grant applications for Soil and Water Conservation Districts to work with landowners on best management practices dealing with water quality issues including water conservation and manure and nutrient management. The AGWQ program also responds to complaints and ensures compliance through inspections of operations with potential risk to surface and groundwater. The normal pre-inspection process involves an assessment of risk to both surface and groundwater resources.
- c. Under HB 5006 (2021) Statewide Adjustments and Budget Reconciliation Adjustments, Section 91 added General Fund for the agriculture water quality management program including in part \$500,000 one-time funding to continue work related to the State's GWMA's. Of this, \$250,000 is to contract with a facilitator to coordinate a task force around the LUBGWMA with state agencies and local partners. The other \$250,000 will be used to complement existing research ODA is doing related to fertilizers and nitrate levels that are impacting groundwater.

#### **V.** Conclusion

Based on these current and planned activities, OHA along with DEQ and ODA have developed a workplan to better protect public health from excessive nitrate levels in drinking water in the LUBGWMA. Oregon's state agencies are committed to better identifying the communities exposed to nitrates in drinking water, communicating the risks of exposure to affected private well owners and users, providing access to private well testing and reducing the risk of exposure to those well users.

Research (Long List) of Health Problems Related to Nitrates

Abu Naser AA, Ghbn N, Khoudary R. (2007) Relation of nitrate contamination of groundwater with methaemoglobin level among infants in Gasa East Mediterr Health J. 12(5) pp. 994-1004. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/18290391</u>

Agency for Toxic Substances and Disease Registry. (2001). Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity. *Department of Health & Human Services*. Atlanta, GA. Retrieved from <u>http://www.atsdr.cdc.gov/csem/nitrate/docs/nitrate\_nitrite.pdf</u>

Arbuckle, T.E., Sherman, G.J., Corey, P.N., Walters, D. & Lo, B. (1988) Water nitrates and CNS birth defects: a population-based case-control study. *Arch.Environ.Health* 43(2) pp. 162-167. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/3377550</u>

Avery A.A. (1999) Infantile methemoglobinemia: reexamining the role of drinking water nitrates. *Environmental Health Perspectives 107*(7) pp. 583–6. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566680/pdf/envhper00512-0111.pdf

Balazs, C., Morello-Frosch, R., Hubbard, A., & Ray, I. (2011). Social disparities in nitratecontaminated drinking water in California's San Joaquin Valley. *Environmental Health Perspectives*, *119*(9), 1272. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230390/

Barrett, J. H., Parslow, R. C., McKinney, P. A., Law, G. R., & Forman, D. (1998). Nitrate in drinking water and the incidence of gastric, esophageal, and brain cancer in Yorkshire, England. *Cancer Causes and Control*, 9(2), 153-159. Retrieved from <a href="https://www.researchgate.net/profile/Graham\_Law/publication/226280359\_Nitrate\_in\_drinking\_water\_and-the-incidence\_of-gastric\_esophageal\_and-brain-cancer\_in\_Yorkshire\_England/link\_s/54368e0d0cf2dc341db35c4f.pdf">https://www.researchgate.net/profile/Graham\_Law/publication/226280359\_Nitrate\_in\_drinking\_water\_and-the-incidence-of-gastric\_esophageal\_and-brain-cancer\_in\_Yorkshire\_England/link\_s/54368e0d0cf2dc341db35c4f.pdf</a>

Benini, D., Vino, L., & Fanos, V. (1998) Acquired methemoglobinemia: a case report. Pediatr Med Chir 20(6) pp. 411-413. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/10335542</u>

Berlin G., Brodin B., Hilden J. (1985) Acute dapsone intoxication: a case treated with continuous infusion of methylene blue, forced diuresis, and plasma exchange. *J Toxicol Clin Toxicol* 22 pp. 537–48. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/6535846</u>

Brender, J.D., Olive, J.M., Felkner, M., Suarez, L., Marckwardt, W., & Hendricks, K.A. (2004) Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. *Epidemiology* 15(3) pp. 330-336. Retrieved from <a href="http://www.ncbi.nlm.nih.gov/pubmed/15097014">http://www.ncbi.nlm.nih.gov/pubmed/15097014</a>

Brender, J., Olive, J., Felkner, M., Suarez, L., Hendricks, K., & Marckwardt, W. (2004). Intake of nitrates and nitrites and birth defects in offspring. *Epidemiology*, *15*(4), S184. Retrieved from <a href="http://journals.lww.com/epidem/Citation/2004/07000/Intake\_of\_Nitrates\_and\_Nitrites\_and\_Birth\_Defects.487.aspx">http://journals.lww.com/epidem/Citation/2004/07000/Intake\_of\_Nitrates\_and\_Nitrites\_and\_Birth\_Defects.487.aspx</a>

Bukowski, J., Somers, G., & Bryanton, J. (2001) Agricultural contamination of groundwater as a possible risk factor for growth restriction or prematurity. J.Occup.Environ.Med. 43(4) pp. 377-383. Retrieved from <a href="http://www.ncbi.nlm.nih.gov/pubmed/11322099">http://www.ncbi.nlm.nih.gov/pubmed/11322099</a>

Bunin, G.R., Kuijten, R.R., Boesel, C.P., Buckley, J.D. & Meadows, A.T. (1993) Relation between maternal diet and subsequent primitive neuroectodermal brain tumors in young children. New England Journal of Medicine 19;329(8) pp. 536-541. http://www.ncbi.nlm.nih.gov/pubmed/8167265

Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P. S., & Wichman, M. (2007). Impacts of waste from concentrated animal feeding operations on water quality. *Environmental health perspectives*, *115*(2), 308. Retrieved from <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817674/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817674/</a>

Cantor, K. P. (1997). Drinking water and cancer. *Cancer Causes & Control*, 8(3), 292-308.Retrieved from <u>https://www.researchgate.net/profile/Kenneth\_Cantor/publication/51297605\_Drinking</u>

water and cancer/links/548719ca0cf268d28f070c4f/Drinking-water-and-cancer.pdf

Cedergren, M.I., Selbing, A.J., Lofman, O., & Kallen, B.A. (2002) Chlorination byproducts and nitrate in drinking water and risk for congenital cardiac defects. *Environmental Research* 89(2) pp. 124-130. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/12123645</u>

Center for Disease Control (1993) Methemoglobinemia in an infant - - Wisconsin, 1992 Morbidity & Mortality Weekly <u>http://www.ncbi.nlm.nih.gov/pubmed/8450825</u>

Centers for Disease Control and Prevention. (1995) A survey of the quality of water drawn from domestic wells in nine Midwest states. *US Department of Health and Human Services*. Retrieved from

http://www.cdc.gov/nceh/hsb/disaster/pdfs/A%20Survey%20of%20the%20Quality%20ofWater %20Drawn%20from%20Domestic%20Wells%20in%20Nine%20Midwest%20States.pdf Center for Disease Control (1996) Spontaneous abortions possibly related to ingestion of nitratecontaminated well water-LaGrange County, Indiana, 1991–1994. *MMWR 45* pp. 569–72. Retrieved from <u>http://www.cdc.gov/mmwr/preview/mmwrhtml/00042839.htm</u>

Center for Disease Control (1997) Methemoglobinemia Attributable to Nitrite Contamination of Potable Water Through Boiler Fluid Additives - New Jersey, 1992-1996. Morbidity and Mortality Weekly Report March 7, 1997. Retrieved from <u>http://www.cdc.gov/mmwr/preview/mmwrhtml/00046656.htm</u>

Chan, T.Y. (1996) Food-borne nitrates and nitrites as a cause of methemoglobinemia. *Southeast Asian J Trop Med Public Health* 27(1) Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9031426

Chiu, H. F., Tsai, S. S., & Yang, C. Y. (2007). Nitrate in drinking water and risk of death from bladder cancer: an ecological case-control study in Taiwan. *Journal of toxicology and environmental Health, Part A*, 70(12), 1000-1004. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/15287390601171801

Comly HH. Landmark article Sept 8, 1945: cyanosis in infants caused by nitrates in well-water. JAMA. 1987;257:2788–2792. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/3553637</u> or <u>http://jama.jamanetwork.com/article.aspx?articleid=366259</u>

Coss, A., Cantor, K. P., Reif, J. S., Lynch, C. F., & Ward, M. H. (2004). Pancreatic cancer and drinking water and dietary sources of nitrate and nitrite. *American Journal of Epidemiology*, *159*(7), 693-701. Retrieved from <a href="https://academic.oup.com/aje/article/159/7/693/71809">https://academic.oup.com/aje/article/159/7/693/71809</a>

Craun, G.F., Greathouse, D.G. & Gunderson, D.H. (1981) Methaemoglobin levels in young children consuming high nitrate well water in the United States. Int.J.Epidemiol. 10(4) pp. 309-317. Retrieved from <u>http://ije.oxfordjournals.org/content/10/4/309.abstract</u>

Croen, L.A., Todoroff K., Shaw G.M. (2001) Maternal exposure to nitrate from drinking water and diet and risk of neural tube defects. *Am J Epidemiol 153* pp.325–31. Retrieved from <a href="http://aje.oxfordjournals.org/content/153/4/325.full.pdf">http://aje.oxfordjournals.org/content/153/4/325.full.pdf</a>

Crutchfield, S., Cooper, J., & Hellerstein, D. (2016). The Benefits of Safer Drinking Water: The Value of Nitrate Reduction. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract\_id=2736657

Dean B.S., Lopez G., Krenzelok E.P. (1992) Environmentally-induced methemoglobinemia in an infant. *Toxicol Clin Tociclo 30*(1) pp. 127-133 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1542142 De Roos, A. J., Ward, M. H., Lynch, C. F., & Cantor, K. P. (2003). Nitrate in public water supplies and the risk of colon and rectum cancers. *Epidemiology*, *14*(6), 640-649. Retrieved from <u>http://journals.lww.com/epidem/Abstract/2003/11000/Nitrate\_in\_Public\_Water\_Supplies\_and\_th</u> e\_Risk\_of.4.aspx

Donahoe, W. E. (1949). Cyanosis in infants with nitrates in drinking water as cause. *Pediatrics*, *3*(3), 308-311. Retrieved from <a href="http://pediatrics.aappublications.org/content/pediatrics/3/3/308.full.pdf">http://pediatrics.aappublications.org/content/pediatrics/3/3/308.full.pdf</a>

Dorsch, M.M., Scragg, R.K., McMichael, A.J., Baghurst, P.A. & Dyer, K.F. (1984) Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study. *Am.J.Epidemiol. 119*(4) pp. 473-486. Retrieved from <a href="http://www.ncbi.nlm.nih.gov/pubmed/6711537">http://www.ncbi.nlm.nih.gov/pubmed/6711537</a>

Durosev, D. (1979) Toxic methemoglobinemia in newborns and infants. *Bilt Hematol Transfuz* <u>http://www.ncbi.nlm.nih.gov/pubmed/552247</u>

Dusdieker L.B., Getchell J.P., Liarakos T.M., Hausler W.J., Dungy C.I. (1994) Nitrate in baby foods: adding to the nitrate mosaic. *Arch Pediatric Adolesc Med 148* pp. 490–94. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/8180640</u>

Dusdieker L.B., Dungy C.I. (1996) Nitrates and babies: A dangerous combination. *Contemp Pediatr* 13(11) pp. 91–102.

Eichholzer M., Gutzwiller F. (1998) Dietary nitrates, nitrites, and *N*-nitroso compounds and cancer risk: a review of the epidemiologic evidence. *Nutr Rev* 56 pp.95–105. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1753-4887.1998.tb01721.x/abstract

Environmental Protection Agency (2010) Yakima Valley Groundwater Contamination: Summary of EPA Sampling Activities. Retrieved from http://yosemite.epa.gov/r10/water.nsf/bb9c63e62d1ae1f8882564f4007da918/1ea7e8c810acb757 882576470077b0e3/\$FILE/Yakima%20Valley%20EPA%20Sampling%20Summary%20June%2 022%202010.pdf

Environmental Working Group. (n.d.) *Pouring it on: the health effects of Nitrate Exposure*. Retrieved from <u>http://www.ewg.org/node/7712</u>

Eubank, W., Carpenter, J. D., Maltsberger, B. A., & Mancl, K. (1998). Nitrate in drinking water. Retrieved from <u>https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/52688/wq0103-1998.pdf?sequence=1</u>

Fan A.M, Steinberg V.E. (1996) Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and development toxicity. *Regul* 

*Toxicol Pharmacol 23*(11) pp. 35–43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8628918

Felsot A.S. (1998) Re-examining the link between nitrates and "blue baby" syndrome: a necessary first step for managing ground water quality to protect public health. Agric Environ News. 150 pp. 1–14. Retrieved from http://aenews.wsu.edu/Oct98AENews/aenewsoctober98.htm#anchor545063

Fewtrell, L (2004) Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease Environmental Health Perspectives 112:1371-1374. Doi:10.1289/ehp.7216 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1247562/pdf/ehp0112-001371.pdf

Freedman, D. M., Cantor, K. P., Ward, M. H., & Helzlsouer, K. J. (2000). A case-control study of nitrate in drinking water and non-Hodgkin's lymphoma in Minnesota. *Archives of Environmental Health: An International Journal*, *55*(5), 326-329. Retrieved from <a href="https://www.tandfonline.com/doi/abs/10.1080/00039890009604024">https://www.tandfonline.com/doi/abs/10.1080/00039890009604024</a>

Gatseva, P. D., & Argirova, M. D. (2008). High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas. *International journal of hygiene and environmental health*, *211*(5-6), 555-559. Retrieved from <u>https://www.sciencedirect.com/science/article/pii/S1438463907001812</u>

Gebara B., Goetting M.M. (1994) Life-threatening methemoglobinemia in infants with diarrhea and acidosis. *Clin Pediatr 33* pp. 370–3. Retrieved from <u>http://cpj.sagepub.com/content/33/6/370.extract</u>

Gulis, G., Czompolyova, M., & Cerhan, J. R. (2002). An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. *Environmental research*, 88(3), 182-187. Retrieved from

https://www.researchgate.net/publication/11321531 An Ecologic Study of Nitrate in Munici pal Drinking Water and Cancer Incidence in Trnava District Slovakia

Gupta, S.K., Gupta, R.C., Seth, A.K., Gupta, A.B., Bassin, J.K. & Gupta, A. (1999) Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water. Bull.World Health Organ 77(9) pp. 749-753. Retrieved from <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557725/pdf/10534899.pdf">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557725/pdf/10534899.pdf</a>

Gupta, S. K., Gupta, R. C., Seth, A. K., Gupta, A. B., Bassin, J. K., Gupta, D. K., & Sharma, S. (1999). Epidemiological evaluation of recurrent stomatitis, nitrates in drinking water, and cytochrome b5 reductase activity1. *The American journal of gastroenterology*, *94*(7), 1808-1812. Available at

https://www.sciencedirect.com/science/article/pii/S0002927099001884

Gupta, S.K., Gupta, R.C., Gupta, A.B., Seth, A.K., Bassin, J.K., Gupta, A. (2000) Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. *Environ.Health Perspect. 108*(4) pp. 363-366. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1638033/

Gupta SK, Gupta RC, Seth AK, Gupta AB, Bassin JK, Gupta A. (2000) Methaemoglobinemia in areas with high nitrate concentration in drinking water. *Natl Med J India 12*(2) pp. 58-61 Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/10835850</u>

Gupta, S.K., Gupta, R.C., Gupta, A.B., Seth, A.K., Bassin, J.K., Gupta, A. & Sharma, M.L. (2001) Recurrent diarrhea in children lining in areas with high levels of nitrate in drinking water. Arch of Environ Health 56(4) pp. 369 – 373. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11572282

Hanukoglu A, Danon PN. (1996) Endogenous methemoglobinemia associated with diarrheal disease in infancy. *J Pediatr Gastroenterol Nutr.* 23 pp. 1–7. Retrieved from <a href="http://journals.lww.com/jpgn/Abstract/1996/07000/Endogenous\_Methemoglobinemia\_Associated">http://journals.lww.com/jpgn/Abstract/1996/07000/Endogenous\_Methemoglobinemia\_Associated</a> <a href="http://journals.lww.com/jpgn/Abstract/1996/07000/Endogenous\_Methemoglobinemia\_Associated\_uvith.l.aspx">http://journals.lww.com/jpgn/Abstract/1996/07000/Endogenous\_Methemoglobinemia\_Associated\_uvith.l.aspx</a>

Harris J.C., Rumack B.H., Peterson R.G., McGuire B.M. (1979) Methemoglobinemia resulting from absorption of nitrates. *JAMA* 242(26) pp. 2869–71. Retrieved from <a href="http://jama.jamanetwork.com/article.aspx?articleid=368092">http://jama.jamanetwork.com/article.aspx?articleid=368092</a>

Hegesh E, Shiloah J. (1982) Blood nitrates and infantile methemoglobinemia. *Clin Chim Acta*. *125* pp. 107–115. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/7139953</u>

Howe, G.R., Burch, D., Chiarelli, A.M., Risch, H.A. & Choi, B.C.K. (1989) An exploratory case-control study of brain tumors in children. Cancer Res. 49(15) pp. 4349-4352. Retrieved from <u>http://cancerres.aacrjournals.org/content/49/15/4349.long</u>

Infante-Rivard, C., Olson, E., & Ayotte, J.L. (2001) Drinking water contaminants and childhood leukemia. *Epidemiology 12*(1) pp. 13-19. <u>http://www.ncbi.nlm.nih.gov/pubmed/11138808</u>

Jensen, O. M. (1982). Nitrate in drinking water and cancer in northern Jutland, Denmark, with special reference to stomach cancer. *Ecotoxicology and environmental safety*, 6(3), 258-267. Retrieved from <a href="https://www.sciencedirect.com/science/article/pii/0147651382900161">https://www.sciencedirect.com/science/article/pii/0147651382900161</a>

Johnson C.J., Kross B.C. (1990) Continuing importance of nitrate contamination of groundwater and wells in rural areas. *American Journal of Industrial Medicine 18*(4) pp. 449–56. Retrieved from <a href="http://onlinelibrary.wiley.com/doi/10.1002/ajim.4700180416/abstract">http://onlinelibrary.wiley.com/doi/10.1002/ajim.4700180416/abstract</a>

Jones, J.H., Sethney, H.T., Schoenhals, G.W., Grantham, R.N. & Riley, H.D. (1973) Grandmother's poisoned well: report of a case of methemoglobinemia in an infant in Oklahoma. *J.Okla.State Med.Assoc.* 66(2) pp. 60-66. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4688467

Jones, R. R., Weyer, P. J., Dellavalle, C. T., Inoue-Choi, M., Anderson, K. E., Cantor, K. P., ... & Ward, M. H. (2016). Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. *Environmental health perspectives*, *124*(11), 1751. Retrieved from <u>https://ehp.niehs.nih.gov/wp-content/uploads/124/11/EHP191.alt.pdf</u>

Kean-Cowdin, R., Pogoda, J.M., Lijinsky, W., Holly, E.A., Mueller, B.A. & Preston-Martin, S. (2003) Maternal prenatal exposure to nitrosatable drugs and childhood brain tumours. International Journal of Epidemiology 32(2) pp. 211-217. <u>http://www.ncbi.nlm.nih.gov/pubmed/12714539</u> and <u>http://ije.oxfordjournals.org/content/32/2/211.long</u>

Keating JP, Lell ME, Strauss AW, Zarkowsky H, Smith GE. (1973) Infantile methemoglobinemia caused by carrot juice. N Engl J Med 288(16) pp. 824–6.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4693932

Knobeloch L., Salna B., Hogan A., Postle J., Anderson H. (2000) Blue babies and nitratecontaminated well water. *Environ Health Perspect 108*(7) Retrieved from <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1638204/pdf/envhper00308-0137.pdf</u>

Knobeloch, L., and M. Proctor (2001) Eight blue babies. *WMJ. 100*(8) pp. 43-47. <u>http://www.wisconsinmedicalsociety.org/\_WMS/publications/wmj/issues/wmj\_v100n8/100-8-SA-Knobeloch.pdf</u>

Kross B.C., Ayebo A.D., Fourtes L.J. (1992) Methemoglobinemia: nitrate toxicity in rural America. *American Family Physician 46* pp. 183–88 retrieved from http://ukpmc.ac.uk/abstract/MED/1621630

Kuijten, R.R., Bunin, G.R., Nass, C.C. & Meadows, A.T. (1990) Gestational and familial risk factors for childhood astrocytoma: results of a case-control study. *Cancer Res.* 50(9) pp. 2608-2612. <u>http://www.ncbi.nlm.nih.gov/pubmed/2328486</u> and <u>http://cancerres.aacrjournals.org/content/50/9/2608.long</u>

Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. *Indian journal of occupational and environmental medicine*, *16*(1), 40. Retrieved from <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482709/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482709/</a>

Kuo, H. W., Wu, T. N., & Yang, C. Y. (2007). Nitrates in drinking water and risk of death from rectal cancer in Taiwan. *Journal of Toxicology and Environmental Health, Part A*, *70*(20), 1717-1722. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/15287390701457704

Laitinen, S., Virtanen, S.M., Rasanen, L. & Penttila, P.L. (1993) Calculated dietary intakes of nitrate and nitrite by young Finns" *Food Addit.Contam* 10(4) pp. 469-477. http://www.ncbi.nlm.nih.gov/pubmed/8405586

Law, G., Parslow, R., McKinney, P., & Cartwright, R. (1999) Non-Hodgkin's lymphoma and nitrate in drinking water: a study in Yorkshire, United Kingdom. *Journal of Epidemiological Community Health* 53(6) pp. 383-384. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1756892/pdf/v053p00383.pdf

Lebby T., Roco J.J., Arcinue E.L. (1993) Infantile methemoglobinemia associated with acute diarrheal illness. *American Journal of Emergency Medicine 11* pp. 471–2. Retrieved from <a href="http://www.sciencedirect.com/science/article/pii/073567579390086Q">http://www.sciencedirect.com/science/article/pii/073567579390086Q</a>

Loomis, J., Bell, P., Cooney, H., & Asmus, C. (2009). A comparison of actual and hypothetical willingness to pay of parents and non-parents for protecting infant health: the case of nitrates in drinking water. *Journal of Agricultural and Applied Economics*, *41*(3), 697-712. Retrieved from <a href="https://www.researchgate.net/profile/John\_Loomis3/publication/46534234\_A\_Comparison\_of\_Actual\_and\_Hypothetical\_Willingness\_to\_Pay\_of\_Parents\_and\_Non-Parents\_for\_Protecting\_Infant\_Health\_The\_Case\_of\_Nitrates\_in\_Drinking\_Water/links/552d17\_160cf2e089a3ad2de6.pdf</a>

Lundberg J.O., Weitzberg E., Cole J.A., Benjamin N. (2004) Nitrate, bacteria and human health. *Nat Rev Microbiol* 2(7) pp. 593–602 Retrieved from http://www.nature.com/nrmicro/journal/v2/n7/full/nrmicro929.html

Manassaram, D.M., Backer, L.C. & Moll, D.M. (2006) A Review of Nitrates in Drinking water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes. Environ Health Perspect. 2006 March; 114(3): 320–327. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392223/

Mansouri A., Lurie A.A. (1993) Concise review: Methemoglobinemia. *American Journal of Hematology* 42 pp. 7–12. <u>http://www.ncbi.nlm.nih.gov/pubmed/8416301</u>

McCredie, M., Maisonneuve, P. & Boyle, P. (1994) Antenatal risk factors for malignant brain tumours in New South Wales children. Int.J.Cancer 56(1) pp. 6-10. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/8262678</u>

McKnight G.M., Duncan C.W., Leifert C., Golden M.H. (1999) Dietary nitrate in man: Friend or foe? *British Journal of Nutrition 81*(5) pp. 349–58. Retrieved from <u>http://journals.cambridge.org/download.php?file=%2F16032\_A63A7D5ABC20BC7365F40DBF</u> <u>4A377C7F\_journals\_\_BJN\_BJN81\_05\_S000711459900063Xa.pdf&cover=Y&code=940bf72a9</u> <u>4083432b5d589f01343f27cbf</u>

Mensinga T.T., Speijers G.J.A., Meulenbelt J. (2003) Health implications of exposure to environmental nitrogenous compounds. Toxicol Rev 22(1) pp. 41–51. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/14579546</u> and <u>http://adisonline.com/toxicology/Abstract/2003/22010/Health\_Implications\_of\_Exposure\_to\_En</u> <u>vironmental.5.aspx</u>

Moller, H. (1997) Work in agriculture, childhood residence, nitrate exposure, and testicular cancer risk: a case-control study in Denmark. *Cancer Epidemiol.Biomarkers Prev.* 6(2) pp. 141-144. Retrieved from <a href="http://www.ncbi.nlm.nih.gov/pubmed/9037566">http://www.ncbi.nlm.nih.gov/pubmed/9037566</a>

Moltchanova, E., Rytkonen, M., Kousa, A., Taskinen, O., Tuomilehto, J, & Karvonen, M. (2004) Zinc and nitrate in the ground water and the incidence of Type 1 diabetes in Finland. *Diabet.Med.* 21(3) pp. 256-261. Retrieved form <u>http://www.ncbi.nlm.nih.gov/pubmed/15008836</u>

Morales-Suarez-Varela, M. M., Llopis-Gonzalez, A., & Tejerizo-Perez, M. L. (1995). Impact of nitrates in drinking water on cancer mortality in Valencia, Spain. *European journal of epidemiology*, *11*(1), 15-21. Retrieved from

https://www.researchgate.net/profile/Maria\_Morales-Suarez-

Varela/publication/226070795\_Impact\_of\_nitrates\_in\_drinking\_water\_on\_cancer\_mortality\_in\_ Valencia\_Spain/links/0fcfd50cb503af3128000000.pdf

Morris, R. D. (1995). Drinking water and cancer. *Environmental health perspectives*, *103*(Suppl 8), 225. Retrieved from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1518976/pdf/envhper00368-0223.pdf

Mueller, B.A., Newton, K., Holly, E.A. & Preston-Martin, S. (2001) Residential water source and the risk of childhood brain tumors. *Environmental Health Perspectives 109*(6) pp. 551-556. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240334/pdf/ehp0109-000551.pdf

Mueller, B.A., Searles Nielsen, S., Preston-Martin, S. Holly, E.A., Cordier, S., Filippinin, G., Peris-Bonet, R., Choi, N.W. (2004) Household water source and the risk of childhood brain tumours: results of the SEARCH International Brain Tumor Study. Int.J.Epidemiol. 33(6):1209-1216. <u>http://www.ncbi.nlm.nih.gov/pubmed/15567873</u> and <u>http://ije.oxfordjournals.org/content/33/6/1209.long</u>

National Research Council, Committee on Toxicology. (1995) Nitrate and nitrite in drinking water. Washington, DC: National Academies Press

Nolan, B. T., & Hitt, K. J. (2006). Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environmental science & technology, 40(24), 7834-7840. Retrieved from

https://pdfs.semanticscholar.org/9499/0f272fea508adcd5f21766d2fbe01a30178c.pdf

Nolan BT, Hitt KJ, Ruddy BC. (2002) Probability of nitrate contamination of recently recharged ground waters in the conterminous United States. U.S.G.S. Environ Sci Technol 36(10) pp. 2138–45. http://water.usgs.gov/nawqa/nutrients/pubs/est\_v36\_no10/ and http://water.usgs.gov/nawqa/nutrients/pubs/est v36 no10/est v36 no10.pdf

Odorog, C. M. (2016). Nitrates and drinking water. Scientific Papers-Series A, Agronomy, 59, 122-126. Retrieved from http://agronomyjournal.usamv.ro/pdf/2016/Art20.pdf

Pacific Groundwater Group (2011) Request for identification Lower Yakima Valley Groundwater Management Area. WA State Department of Ecology. Retrieved from www.yakimacounty.us/NitrateProgram/English/Docs/Lower%20Yakima%20GWMA%20Reque st%20For%20Identification%20FINAL.pdf

Parslow R.C., McKinney P.A., Law G.R., Staines A., Williams R., Bodansky H.J. (1997) Incidence of childhood diabetes mellitus in Yorkshire, northern England, is associated with nitrate in drinking water: an ecological analysis. Diabetologia 40(5) pp. 550–6. Retrieved from http://www.springerlink.com/content/7d21fcmtmgjj54pt/ and http://www.springerlink.com/content/7d21fcmtmgjj54pt/fulltext.pdf

Pogoda, J.M., and Preston-Martin, S. (2001) Maternal cured meat consumption during pregnancy and risk of paediatric brain tumour in offspring: potentially harmful levels of intake. Public Health Nutr. 4(2) pp. 183-189. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11299090

Pollack, E.S. & Pollack, C.V. (1994) Incidence of subclinical methemoglobinemia in infants with diarrhea. Annals of Emergency Medicine. http://www.ncbi.nlm.nih.gov/pubmed/8092592

Preston-Martin, S., Yu, M.C., Benton, B., & Henderson, B.E. (1982) N-Nitroso compounds and childhood brain tumors: a case-control study. Cancer Res. 42(12) pp. 5240-5245. Retrieved from http://cancerres.aacrjournals.org/content/42/12/5240.abstract

Preston-Martin, S., Pogoda, J.M., Mueller, B.A., Holly, E.A., Lijinsky, W. & Davis, R.L. (1996) Maternal consumption of cured meats and vitamins in relation to pediatric brain tumors. Cancer

*Epidemiol.Biomarkers Prev.* 5(8) pp. 599-605. Retrieved from http://cebp.aacrjournals.org/content/5/8/599.long

Reinik, M., Tamme, T., Roasto, M., Juhkam, K., Jurstenko. S., Tenno, T. & Kiis, A. (2005) Nitrites, nitrates and N-nitrosoamines in Estonian cured meat products: intake by Estonian children and adolescents. *Food Addit.Contam* 22(11) pp. 1098-1105. http://www.ncbi.nlm.nih.gov/pubmed/16332632

Reynolds K.A. (2002) The prevalence of nitrate contamination in the United States. *Water Conditioning and Purification 44*(1). Retrieved from http://www.wcponline.com/ArchiveNewsView.cfm?pkArticleID=1330&AT=T

Sadeq, M., Moe, C.L., Attarassi, B., Cherkaouil, L., Elauad, R., & Idrissi, L. (2008) Drinking water nitrate and prevalence of methemoglobinemia among infants and children ages 1-7 years in Moroccan areas. International Journal of Environmental Health <a href="http://www.ncbi.nlm.nih.gov/pubmed/18155958">http://www.ncbi.nlm.nih.gov/pubmed/18155958</a>

Saito T., Takeichi S., Osawa M., Yukawa N., Huang X.L. (2000) A case of fatal methemoglobinemia of unknown origin but presumably due to ingestion of nitrate. *International Journal of Legal Med 113*(3) pp. 164–7. Retrieved from <a href="http://www.springerlink.com/content/34befl8dg6v6p9rr/">http://www.springerlink.com/content/34befl8dg6v6p9rr/</a>

Sanchez J., Benito-Fernandez J., Mintegui-Raso S. (2001) Methemoglobinemia and consumption of vegetables in infants. *Pediatrics 107*(5) pp. 1024–8.Retrieved from <a href="http://pediatrics.aappublications.org/content/107/5/1024.abstract">http://pediatrics.aappublications.org/content/107/5/1024.abstract</a> and <a href="http://content.ebscohost.com/pdf13\_15/pdf/2001/PDT/01May01/4441433.pdf?T=P&P=AN&K=4441433&S=R&D=aph&EbscoContent=dGJyMNLr40SeprY4y9f3OLCmr0qeqLBSs6a4TLKWxWXS&ContentCustomer=dGJyMPGssk2xqLJNuePfgeyx44Hy</a>

Sandor, J., Kiss, I., Farkas, O., & Ember, I. (2001). Association between gastric cancer mortality and nitrate content of drinking water: ecological study on small area inequalities. *European journal of epidemiology*, *17*(5), 443-447. Retrieved from <a href="https://www.researchgate.net/publication/226891543">https://www.researchgate.net/publication/226891543</a> Association between gastric cancer mort ality and nitrate content of drinking water Ecological study on small area inequalities

Sarasua, S., and Savitz. D.A. (1994) Cured and broiled meat consumption in relation to childhood cancer: Denver, Colorado (United States) *Cancer Causes Control 5*(2) pp. 141-148. http://www.ncbi.nlm.nih.gov/pubmed/8167261

Savino, F., Maccario, S., Guido, C., Castagno, E., Farinasso, D., Cresi, F., Silvestro, L., & Mussa, G.C. (2006) Methemoglobinemia caused by the ingestion of courgette soup given in

order to resolve constipation in two formula-fed infants. *Ann Nutr.Metab* 50(4) pp. 368-371. http://www.ncbi.nlm.nih.gov/pubmed/16809905

Schmitz J.T. (1961) Methemoglobinemia—a cause of abortions? Preliminary report. Obstet Gynecol. 17 pp. 413–415. Retrieved from <u>http://journals.lww.com/greenjournal/Citation/1961/04000/Methemoglobinemia A Cause of A</u> bortions .2.aspx

Scragg RK, Dorsch MM, McMichael AJ, Baghurst PA. (1982) Birth defects and household water supply. Epidemiological studies in the Mount Gambier region of South Australia. *Med J Aust.* 2 pp. 577–579. <u>http://www.ncbi.nlm.nih.gov/pubmed/7162445</u>

Shearer L.A., Goldsmith J.R., Young C., Kearns O.A., Tamplin B.R. (1972) Methemoglobin levels in infants in an area with high nitrate water supply. *American Journal of Public Health* 62(9) pp. 1174–80. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1530503/pdf/amjph00731-0006.pdf

Shuval H.I., Gruener N. (1992) Epidemiological and toxicological aspects of nitrates and nitrites in the environment. *American Journal of Public Health* 62(8):1045–52. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1530374/pdf/amjph00730-0007.pdf

Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—a review. *Journal of environmental quality*, 22(3), 392-402. Retrieved from <a href="https://nature.berkeley.edu/classes/espm-120/Website/Spalding1993.pdf">https://nature.berkeley.edu/classes/espm-120/Website/Spalding1993.pdf</a>

Super, M., Heese, H. D. V., MacKenzie, D., Dempster, W. S., Du Plessis, J., & Ferreira, J. J. (1981). An epidemiological study of well-water nitrates in a group of South West African/Namibian infants. *Water Research*, *15*(11), 1265-1270. Retrieved from <a href="http://www.sciencedirect.com/science/article/pii/0043135481901032">http://www.sciencedirect.com/science/article/pii/0043135481901032</a>

Tabacova S., Balabaeva L., Little R.E. (1997) Maternal exposure to exogenous nitrogen compounds and complications of pregnancy. *Arch Environ Health* 52(5) pp. 341–7. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/9546756</u>

Tajtakova, M., Semanova, Z., Tomkova, Z., Szokeova, E., Majoros, J., RAdikova, Z., Sebokova, E. Klines, I, & Langer, P. (2006) Increased thyroid volume and frequency of thyroid disorders signs in schoolchildren from nitrate polluted area. *Chemosphere* 62(4) pp. 559-564. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/16095667</u>

Tamme, T., Reinik, M., Roasto, M., Juhkam, K., Tenno, T., & Kiis, A. (2006) Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. *Food Addit.Contam* 23(4) pp. 355-361.

http://peer.ccsd.cnrs.fr/docs/00/57/75/75/PDF/PEER\_stage2\_10.1080%252F0265203050048236 3.pdf

Terblanche, A. P. S. (1991). Health hazards of nitrate in drinking water. *Water S. A.*, *17*(1), 77-82. Retrieved from http://www.wrc.org.za/Knowledge%20Hub%20Documents/Water%20SA%20Journals/Manuscripts/1991/WaterSA\_1991\_17\_0612.PDF

Thorpe, N., and Shirmohammadi, A. (2005) Herbicides and nitrates in groundwater of Maryland and childhood cancers: a geographic information systems approach. *J Environ Sci Health C.Environ Carcinog.Ecotoxicol.Rev.* 23(2) pp. 261-278. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16291529

Tirado, R. (2007). Nitrates in drinking water in the Philippines and Thailand. *Greenpeace Research Laboratories Technical Note*, *11*, 2007. Retrieved from <a href="http://www.greenpeace.to/publications/Nitrates\_Philippines\_Thailand.pdf">http://www.greenpeace.to/publications/Nitrates\_Philippines\_Thailand.pdf</a>

Tricker A.R., Preussmann R. (1991) Carcinogenic *N*-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. *Mutat Res* 259 pp. 277–89. Retrieved from <u>http://www.sciencedirect.com/science/article/pii/0165121891901234</u> and <u>http://www.ncbi.nlm.nih.gov/pubmed/2017213</u>

Tsezou, A., Kitsiou-Tzeli, S., Galla, A., Gourgiotis, D., Papageorgiou, J., Mitrou, S., Molybdas, P. A., Sinaniotis, C. (1996) High nitrate content in drinking water: cytogenetic effects in exposed children. *Arch.Environ.Health* 51(6) pp. 458-461. Retrieved from <a href="http://www.ncbi.nlm.nih.gov/pubmed/9012325">http://www.ncbi.nlm.nih.gov/pubmed/9012325</a>

U.S. Department of Agriculture: Food Safety and Inspection Service. (2001) Fact Sheets: Food Labeling - Additives in Meat and Poultry Products. Retrieved from <u>http://www.fsis.usda.gov/Fact\_Sheets/Additives\_in\_Meat\_&\_Poultry\_Products/index.asp</u>

U.S. Environmental Protection Agency. (2006) 2006 Edition of the Drinking Water Standards and Health Advisories. Retrieved from <a href="http://www.epa.gov/waterscience/criteria/drinking/dwstandards.pdf">http://www.epa.gov/waterscience/criteria/drinking/dwstandards.pdf</a>

U.S. Environmental Protection Agency (2006) Drinking Water Contaminants. Retrieved from <u>http://www.epa.gov/safewater/contaminants/index.html</u>

U.S. Environmental Protection Agency. (2005) Priority List of Hazardous Substances for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 104(i). Retrieved form <u>http://www.atsdr.cdc.gov/cercla/</u>

US Environmental Protection Agency. Consumer factsheet on: nitrates/nitrites. Washington, DC: US Environmental Protection Agency; 2004. Available from URL: http://www.epa.gov/safewater/dwh/c-ioc/nitr

US Environmental Protection Agency. Integrated Risk Information System (IRIS) database. Nitrate (CASRN 14797-55-8). Washington, DC: US Environmental Protection Agency. 2002. Available at URL: <u>http://www.epa.gov/iris</u>

U.S. Environmental Protection Agency. 2007. *Nitrates and Nitrites TEACH Chemical Summary*. Retrieved from <u>http://www.epa.gov/teach/chem\_summ/Nitrates\_summary.pdf</u>

U.S. Environmental Protection Agency (2012) Preliminary data Lower Yakima Valley well testing. Retrieved from <u>ftp://ftp.epa.gov/reg10ftp/sites/yakima/groundwater\_data/</u>

U.S. Food and Drug Administration. (1998) A Fresh Look at Food Preservatives. Retrieved from <u>http://www.cfsan.fda.gov/~dms/fdpreser.html</u>

US Geological Survey. (1999) The quality of our nation's waters: nutrients and pesticides. Circular 1225. Reston, VA: US Department of the Interior. Retrieved from <u>http://pubs.usgs.gov/circ/circ1225/</u>

VanDerslice, J. (2009). Final Report: Dose-Response of Nitrate and Other Methemoglobin Inducers on Methemoglobin Levels of Infants. National Center for Environmental Research WA State Department of Health. Olympia, WA. Retrieved from

http://cfpub.epa.gov/ncer\_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/5379/rep\_ort/F

Van Grinsven, H. J., Ward, M. H., Benjamin, N., & De Kok, T. M. (2006). Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?. *Environmental Health*, *5*(1), 26. Retrieved from <u>https://ehjournal.biomedcentral.com/articles/10.1186/1476-069X-5-26</u>

Van Grinsven, H. J., Rabl, A., & de Kok, T. M. (2010). Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment. *Environmental health*, *9*(1), 58. Retrieved from <u>https://ehjournal.biomedcentral.com/articles/10.1186/1476-069X-9-58</u>

Van Leeuwen, J. A., Waltner-Toews, D., Abernathy, T., Smit, B., & Shoukri, M. (1999). Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987-1991. *International Journal of Epidemiology*, 28(5), 836-840. Retrieved from https://oup.silverchair-

cdn.com/oup/backfile/Content\_public/Journal/ije/28/5/10.1093\_ije\_28.5.836/1/280836.pdf?Expi res=1496077591&Signature=eJKIkjMC7~pHHeXuySz6qz6lisEhIYcisyAgnbw5rBzlcj4WlXuxc Dd8zM9nF1REGBKq54N~- RG~OVN0~UFawShZMbJgkZji64HtsX~yzISDdNZqhXv6cevgsgIrHWffbRJ8dllRp8YS8FmiXl VTlxT7RaD62Az5FlSZKUGILgszWLsK13W18Pg3FewdgMxw0S6CfRzKH2I5fIq5RdLRfGpD dVy5UG7TUwhV5bYTVH6t0p1xHEBhD2CTqx462wGSFVqOh~C6KAgcs5ei6xqfr~kJkb8bmuhb4gQ54mvCb52oQbH3nNSVNjHnCsdOcbU0mfM6FjLHFISf1zWaNQjn A\_\_&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q

Van Loon A.J., Botterweck A.A., Goldbohm R.A., Brants H.A., van Klaveren J.D., van den Brandt P.A. (1998) Intake of nitrate and nitrite and the risk of gastric cancer: a prospective cohort study. *British Journal of Cancer* 78 pp. 129–35. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2062934/pdf/brjcancer00001-0133.pdf

Van Maanen, J. M., Welle, I. J., Hageman, G., Dallinga, J. W., Mertens, P. L., & Kleinjans, J. C. (1996). Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines. *Environmental Health Perspectives*, *104*(5), 522. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469364/pdf/envhper00336-0070.pdf

van Maanen, J.M., Albering, H.J., de Kok, T.M., van Breda, S.G., Curfs, D.M., Vermeer, I. T., Ambergen, A.W., Wolffenbuttel, B.H., Klenjans, J.C. & Reeser, H.M. (2000) Does the risk of childhood diabetes mellitus require revision of the guideline values for nitrate in drinking water? *Environ.Health Perspect. 108*(5) pp. 457-461. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1638059/

van Maanen, J. M., van Dijk, A., Mulder, K., de Baets, M. H., Menheere, P. C., van der Heide, D., ... & Kleinjans, J. C. (1994). Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. *Toxicology letters*, 72(1-3), 365-374. Retrieved from <a href="https://www.researchgate.net/publication/14996221\_Consumption\_of\_drinking\_water\_with\_high">https://www.researchgate.net/publication/14996221\_Consumption\_of\_drinking\_water\_with\_high</a> <a href="https://www.researchgate.net/publication/14996221\_Consumption\_of\_drinking\_water\_with\_high">https://www.researchgate.net/publication/14996221\_Consumption\_of\_drinking\_water\_with\_high</a> <a href="https://www.researchgate.net/publication/14996221\_consumption\_of\_drinking\_water\_with\_high">https://www.researchgate.net/publication/14996221\_consumption\_of\_drinking\_water\_with\_high</a> <a href="https://www.researchgate.net/publication/14996221\_consumption\_of\_drinking\_water\_with\_high">https://www.researchgate.net/publication/14996221\_consumption\_of\_drinking\_water\_with\_high</a> <a href="https://www.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network.network

Venkateswari R, Ganesh R, Deenadayalan M, Mahender E, Ramachandran B, Janakiraman (2007) Transient Methemoglobinemia in an infant. *Indian Journal of pediatrics* 74(11). Pp. 1037-1038. Retrieved form <a href="http://www.ncbi.nlm.nih.gov/pubmed/18057688">http://www.ncbi.nlm.nih.gov/pubmed/18057688</a>

Virtanen, S.M., Jaakkola, L., Rasanen. L., Ylonen, K., Aro, A., Lounamaa, R., Akerblom, H.K., & Tuomilehto, J. (1994) Nitrate and nitrite intake and the risk for type 1 diabetes in Finnish children. Childhood Diabetes in Finland Study Group. *Diabet.Med.* 11(7) pp. 656-662. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/7955990</u>

Volkmer, B.G., Ernst, B., Simon, J., Kuefer, R., Bartsch, G., Bach, D., & Gschwend, J.E. (2005) Influence of nitrate levels in drinking water on urological malignancies: a community-based cohort study. *BJU.Int* 95(7) pp. 972-976. <u>http://www.ncbi.nlm.nih.gov/pubmed/15839916</u> Walton G. (1951) Survey of literature relating to infant methemoglobinemia due to nitratecontaminated water. Am J Public Health. 41 pp. 986–996. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1525621/pdf/amjphnation00426-0083.pdf

Ward M.H., Mark S.D., Cantor K.P., Weisenburger D.D., Correa-Villasenor A., Zahm S.H. (1996) Drinking water nitrate and the risk of non-Hodgkin's lymphoma. *Epidemiology7*(5) pp. 465–71. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/8862975</u>

Ward M.H., deKok T.M., Levallois P., Brender J., Gulis G., Nolan B.T., VanDerslice J. (2005) Workgroup report: Drinking-water nitrate and health - - recent findings and research needs. *Environ Health Perspect 113*(11) pp. 1607-1614. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/16263519\_and</u> http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1310926/pdf/ehp0113-001607.pdf

Ward, M. H., Cantor, K. P., Cerhan, J., Lynch, C. F., & Hartge, P. (2004). Nitrate in public water supplies and risk of cancer: Results from recent studies in the midwestern United States. *Epidemiology*, *15*(4), S214. Retrieved from <a href="http://journals.lww.com/epidem/Citation/2004/07000/Nitrate\_in\_Public\_Water\_Supplies\_and\_Risk\_of.568.aspx">http://journals.lww.com/epidem/Citation/2004/07000/Nitrate\_in\_Public\_Water\_Supplies\_and\_Risk\_of.568.aspx</a>

Ward, M. H., Heineman, E. F., Markin, R. S., & Weisenburger, D. D. (2008). Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. *International journal of occupational and environmental health*, *14*(3), 193-197. Retrieved from <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797489/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797489/</a>

Ward, L.B. Yakima Herald Republic. (2009) "Hidden Wells, Dirty Water" http://www.yakima-herald.com/stories/2008/10/11/hidden-wells-dirty-water

Washington State Dept. of Ecology (2010) *Lower Yakima Valley groundwater quality: preliminary assessment and recommendations document.* Retrieved from <a href="https://fortress.wa.gov/ecy/publications/publications/1010009.pdf">https://fortress.wa.gov/ecy/publications/publications/1010009.pdf</a>

WA State Dept. of Health (2010) Nitrate in Drinking Water – Questions and Answers (English) Retrieved from <u>http://www.doh.wa.gov/ehp/dw/Publications/331-214.pdf</u>

WA State Dept. of Health (2010) Nitrate in Drinking Water – Questions and Answers (Spanish) Retrieved from <u>http://www.doh.wa.gov/ehp/dw/Publications/331-214s.pdf</u>

Wei-Hua, J., Qing-Hua, P., Hai-De, Q., Ya-Fei, X., Guo-Ping, S., Lina, C., Li-Zhen, C., Qi-Sheng, F., Ming-Huang, H., Yi-Xin, A., & Yin Yao, S. (2000) Dietary exposure to nitrite and nitrosamines and risk of nasopharyngeal carcinoma in Taiwan. *International Journal of Cancer 86*(5) pp. 603-609. <u>http://carcin.oxfordjournals.org/content/30/12/2031.full</u>

Weyer, P. J., Cerhan, J. R., Kross, B. C., Hallberg, G. R., Kantamneni, J., Breuer, G., ... & Lynch, C. F. (2001). Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women's Health Study. *Epidemiology*, *12*(3), 327-338. Retrieved from <u>http://s3.amazonaws.com/academia.edu.documents/42632538/Municipal\_Drinking\_Water\_Nitra</u> <u>te\_Level\_a20160212-31872-</u> gownru.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1497141341&Signat <u>ure=2YyjqoK44IfKWXwMm3ycZObtXrU%3D&response-content-</u> <u>disposition=inline%3B%20filename%3DMunicipal\_Drinking\_Water\_Nitrate\_Level\_a.pdf</u>

Wiklund, G.M., Aastrup, L., Pousette, M., Thunholm, J., Saldeen, B., Wernroth, T., Zaren, & Holmberg, L. (2001) Incidence and geographical distribution of sudden infant death syndrome in relation to content of nitrate in drinking water and groundwater levels. *Eur.J.Clin.Invest 31*(12) pp. 1083-1094. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/11903496</u>

World Health Organization. (2003). Nitrate and nitrite in drinking-water: background document for development of WHO guidelines for drinking-water quality. Retrieved from <a href="http://apps.who.int/iris/bitstream/handle/10665/75380/WHO\_SDE\_WSH\_04.03\_56\_eng.pdf?seq\_uence=1">http://apps.who.int/iris/bitstream/handle/10665/75380/WHO\_SDE\_WSH\_04.03\_56\_eng.pdf?seq\_uence=1</a>

World Health Organization. (2006) International Program on Chemical Safety, Environmental Health Criteria 5: Nitrates, Nitrites, and N-Nitroso Compounds. Retrieved from <u>http://www.inchem.org/documents/pims/chemical/pimg016.htm</u>

World Health Organization. (2008). *Guidelines for drinking-water quality: second addendum*. *Vol. 1, Recommendations*. World Health Organization. Retrieved from <a href="http://www.who.int/water\_sanitation\_health/dwq/secondaddendum20081119.pdf">http://www.who.int/water\_sanitation\_health/dwq/secondaddendum20081119.pdf</a>

World Health Organization. (2010). *Drinking water quality in the South-East Asia region* (No. SEA-EH-567). WHO Regional Office for South-East Asia. Retrieved from <a href="http://apps.who.int/iris/bitstream/handle/10665/204999/B4470.pdf?sequence=1&isAllowed=y">http://apps.who.int/iris/bitstream/handle/10665/204999/B4470.pdf?sequence=1&isAllowed=y</a>

Wright R.O., Woolf A.D., Shannon M.W., Magnani B. (1998) *N*-acetylcysteine reduces methemoglobin in an in-vitro model of glucose-6-phosphate dehydrogenase deficiency. *Acad Emerg Med 5*(3) pp. 225–9. Retrieved from <u>http://onlinelibrary.wiley.com/doi/10.1111/j.1553-</u> 2712.1998.tb02617.x/abstract and http://www.ncbi.nlm.nih.gov/pubmed/9523930

Wright R.O., Lewander W.J., Woolf A.D. (1999) Methemoglobinemia: etiology, pharmacology, and clinical management. *Annals of Emergency Medicine 34*(5) pp. 646–56. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/10533013</u>

Xu G, Song P, Reed P.I. (1992) The relationship between gastric mucosal changes and nitrate intake via drinking water in a high-risk population for gastric cancer in Moping County, China. Eur J Cancer Prev 1992; 1(6):437–43.

http://journals.lww.com/eurjcancerprev/Abstract/1992/10000/The\_relationship\_between\_gastric \_mucosal\_changes.7.aspx

Yakima County (2011) Nitrate Treatment Pilot Program – Final Report. Retrieved from <u>http://www.yakimacounty.us/nitrateprogram/english/Docs/Nitrate%20Treatment%20Pilot%20Pr</u>ogram.pdf

Yang, C. Y., Cheng, M. F., Tsai, S. S., & Hsieh, Y. L. (1998). Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. *Cancer Science*, *89*(2), 124-130. Retrieved from <u>http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.1998.tb00539.x/pdf</u>

Yang, C. Y., Wu, D. C., & Chang, C. C. (2007). Nitrate in drinking water and risk of death from colon cancer in Taiwan. *Environment international*, *33*(5), 649-653. Retrieved from <u>https://pdfs.semanticscholar.org/855d/857eea83aad377b815d3aff72cca3e8eedde.pdf</u>

Zeman C.L., Kross B., Vlad M. (2002) A nested case-control study of methemoglobinemia risk factors in children of Transylvania, Romania. *Environmental Health Perspectives 110*(8) pp. 817–22. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240955/pdf/ehp0110-000817.pdf</u>

Zeman, C.L., Vlad, C.L., & Kross, B. (2002) Exposure methodology and findings for dietary nitrate exposures in children of Transylvania, Romania. *J.Expo.Anal.Environ.Epidemiol.* 12(1) pp. 54-63. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/11859433</u>

Compiled by Jean Mendoza

Last Updated July 16, 2018



# Morrow County Well Water Testing Proposal

# **Background:**

The State of Oregon recommends that well water be tested annually for nitrates and coliform bacteria. In addition, testing for arsenic should be done at least once to see if arsenic is present and testing for other minerals should occur every 5-10 years. Despite the State's recommendations, many home owners do not regularly test their well water, which can lead to adverse health outcomes. Barriers to testing include lack of understanding surrounding the need to test, cost, and collection logistics. In order to accurately test for coliform, water samples must reach the lab within 24 hours (nitrates within 48 hours and arsenic within 2 weeks).

As part of the District's mission to achieve a healthier Morrow County, the District proposes to initiate a free well water testing program countywide in partnership with Morrow County.

# Logistics:

- The District will establish one or more contracts with accredited drinking water laboratories in the region. (Discounts available for volume.)
- The District will initiate an education campaign in partnership with Morrow County to promote well water testing to residential well owners/users in Morrow County.
- Due to the time sensitive nature of the samples, the District will establish specific days for test kits to be picked up and returned to District locations. Samples will be couriered to the appropriate lab.

# Cost & Volume:

- Testing for nitrates, arsenic, and coliform is approximately \$140 per test kit.
- Based on information from the Oregon Water Resources Department database, the District estimates there are approximately 1,500 residential wells in Morrow County.

# **Resources:**

- Oregon Well Owner's Handbook
   <a href="https://www.oregon.gov/owrd/WRDPublications1/Well\_Water\_Handbook.pdf">https://www.oregon.gov/owrd/WRDPublications1/Well\_Water\_Handbook.pdf</a>
- Lower Umatilla Basin Groundwater Management Area <u>https://lubgwma.org/</u>

# LUBGWMA Post Doc (1 Year Position)

Location:Corvallis, Oregon and Hermiston, Oregon (HAREC)Duration:1 year with potential renewalReports to:Todd Jarvis, OSU/INR-IWW & Scott Lukas (HAREC)

#### **Position Summary**

The Institute for Water & Watersheds (IWW), in concert with the Hermiston Agricultural Research and Extension Center (HAREC), seek to hire a Full-Time 12-month Post doctoral scholar (Post doc) (potentially renewable for a second year based on satisfactory performance and funding). The Post doc will focus on two tasks:

- Harmonize various hydrogeologic conceptual models. Compare and contrast various hydrogeologic conceptual models including boundary conditions for any analytical or numerical models of the groundwater system. Compile and correlate groundwater flow, monitoring, barrier to flow, well construction, sub-area, cone of depression and other data sets compiled by Oregon Department of Agriculture, Oregon Water Resources Department, Oregon Health Authority, Department of Environmental Quality, and public & private monitoring and permit reports to complete the following:
  - a. Compile and present report within 1 year on the following:
    - i. Regions of the 352,000 acre Lower Umatilla Basin Ground Water Management Area (LUBGWMA) that have monitoring and regulatory control and where facts indicate that those regions are hydrologically disconnected from other areas of the LUBGWMA.
    - ii. An inferred map showing areas where connectivity could or could not exist and the data gaps present that prevents conclusion.
    - iii. Obtain peer review and present results, amend accordingly or justify reasoning for maintaining positions
- 2. Develop one peer reviewed data set, using all data sets that better quantify and qualify:
  - a. Groundwater sub-areas based upon hydrology and hydrogeology, well construction, barriers to flow, pumping regime (i.e. cone of depression), and other man-made and natural indicators.
  - b. Identify data gaps to development of sub-areas and recommend research, monitoring, modelling or other tools to fill data gaps.
  - c. Develop a comprehensive LUBGWMA groundwater model or develop project plan for development of model to test scenarios in conjunction with LUBGWMA Task Force coordination.
  - d. Develop an estimate of the cost to establish monitoring control in areas where inference exists and where data needs to be generated to establish control (including what types and the timeline for establishing technically defensible conclusion).

The Post doc position will provide economic, environmental and social value to the people of Oregon by supporting the sustainable management of Oregon's water resources, which are necessary for agricultural production, environmental protection, and supporting the life and livelihoods of urban and rural water users.

# **Decision Making Guidelines**

This position is a Post doc position, and decisions made by this position are consistent with normal standards for tenure-track faculty. This includes applying for external grants, advising students, and participating in research and outreach projects.

# **Position Duties**

This position has duties as follows:

- 1. Research (95%) Contribute to nationally recognized, externally funded research programs in one or more of the topical areas listed above; generate scholarly outputs, in the form of peer-review journal articles and other accepted forms of scholarship reflecting research activities.
- 2. Grant Writing (5%) Assist with generating external grants and/or contracts for the Post doc appointment to sustain future research.

The Post doc will be expected to be responsive to and contribute to OSU initiatives for promoting student success and enhancing diversity at OSU.

# **Minimum/Required Qualifications**

- Ph.D in Hydrogeology, or a related field such as Biological, Ecological, Agricultural, Civil, and Environmental Engineering.
- Demonstrated scholarship in the area of hydrogeologic and groundwater analysis, modeling, and connection to related federal and state policies.
- GIS skills and ability to communicate and work with GIS specialists.
- Excellent communication skills.
- Commitment to promoting and enhancing diversity.

# **Preferred Qualifications**

- Demonstrated commitment to working collaboratively with other researchers and teams.
- Demonstrated commitment to working collaboratively with public agencies, non-governmental organizations, and agriculturalists.

# Working Conditions/Work Schedule

Position is based in Corvallis (90%) and Hermiston (10%).

# **Proposed Stipend/Range and Benefits**

https://gradschool.oregonstate.edu/postdocs/stipends-and-benefits

# **Equal Opportunity Employer**

https://eoa.oregonstate.edu/affirmative-action

#### **Post Doc Handbook**

https://gradschool.oregonstate.edu/sites/gradschool.oregonstate.edu/files/postdoc-handbook-2020.pdf

## How to Apply

Please send a single PDF file (word document will not be opened) of the following documents

to Todd Jarvis (<u>todd.jarvis@oregonstate.edu</u>) with reference "Postdoc Application LUBGWMA-Your Last Name" in the subject line.

1. a detailed curriculum vitae and academic transcript

2. cover letter describing how your qualifications and experiences have prepared you for this Post doc position (1 page)

3. statement of research interests and experience (1 page)

4. contact information for three references: one must be your Ph.D. advisor and Post doc advisor (for candidate with prior Post doc experience).

For full consideration, apply by: May 30, 2022

Start Date: July 5, 2022, or TBD

Applications after this date may be considered if position is not filled. Please note that only candidates that meet the required skills and expertise will be contacted.

#### **Advertising Circulation**

National Institutes for Water Resources (54 Water Resources Research Institutes, one in each state and US territories) - <u>https://water.usgs.gov/wrri/index.php</u>

Josh's Water Jobs - https://www.joshswaterjobs.com/

WaterWired Blog - https://www.waterwired.org/

OSU Open Postdoctoral Scholar Positions - https://gradschool.oregonstate.edu/postdocs/open-positions

OSU Water Listservs

# Scope of Work Lower Umatilla Basin Groundwater Management Area: Nitrates Research, Data, and Information Network November 9, 2021

# Background

The Oregon Department of Environmental Quality (DEQ) declared the Lower Umatilla Basin Ground Water Management Area (LUBGWMA) in 1990 because nitrate-nitrogen concentrations in area groundwater samples exceeded 70% of the federal safe drinking water standard (10 parts per million). Subsequently a 4-year interagency hydrogeologic investigation to determine the extent of contamination and to identify potential sources of contamination was conducted. Pursuant to the Oregon groundwater program (found at ORS 468B.150 to 190 the DEQ) agricultural producers and processors, local area residents and governments formed a committee to develop an action plan to address the nitrate contamination concerns in the basin. Seven years later, in 1997, an action plan was adopted by the LUBGMA Committee. The lead agency for implementing the action plan was the Umatilla Soil and Water Conservation District. More than 25 years after the GWMA's declaration, monitoring shows that groundwater nitrate concentrations in many area wells remain high relative to the federal drinking water standard and the state action level. In some areas, wells' concentrations have leveled off or declined while in other wells' concentrations continue to rise. Additionally, some areas of the LUBGWMA show wells have remained below state action level for many years. Public water suppliers – who cannot legally deliver water with more than the 10 ppm nitrate-nitrogen federal standard – have mitigated the problem by deepening wells, drilling new wells, installing treatment systems, or shutting down and using alternative drinking water supplies.<sup>1</sup>

The Oregon Department of Agriculture (ODA) and DEQ committed to working together with state and local agencies as well as regional and local partners to better understand why nitrate-nitrogen concentrations persist at higher than acceptable levels in some areas and to develop an approach to reduce nitrate-nitrogen levels in the Lower Umatilla Basin Groundwater Management Area.

# **Project Purpose**

The purpose of this project is to engage in a science-based, joint fact finding process to understand how nitrate levels within sub regions in the Lower Umatilla Basin Groundwater Management Area can be quantified and reduced, and to establish a process that may lead toward regionalizing all or portions of the LUBGWMA based upon hydraulic connectivity. This project specifically focuses on gathering and reviewing existing data and research that are relevant to nitrates and to alluvial aquifers in the Lower Umatilla Basin, and creating a long-term implementation plan. OSU's role is to coordinate a science-based approach to help strengthen the objectivity, transparency, and rigor of the overall process. The end goal of this engagement is to inform either the LUBGWMA Committee or any future LUBGWMA implementing or governance body of the hydrologic make-up of the LUBGWMA using existing data and if the LUBGWMA is actual multiple regionally connected alluvial aquifers rather than one large interconnected

<sup>&</sup>lt;sup>1</sup> Background paragraph 1 source: Oregon Solutions Assessment 05.02.17

aquifer. Additional goals of the effort are to inform all stakeholders on conclusions that can be based on currently available science, where data gaps occur requiring inference of connectivity and the process and timeline that would need to be pursued to acquire such scientific data. The goal is to enable the use of this peer reviewed data to identify if the LUBGWMA should include regional remediation or nitrate reduction efforts that could potentially lead to reductions in nitrate levels below action level and, hopefully future de-designation of all or portions of the LUBGWMA, signifying water quality recovery has been achieved.

# **Scope of Services**

The Institute for Water and Watersheds and the Institute for Natural Resources at Oregon State University (IWW-INR) shall retain a post-doctoral scholar for technical and research support necessary to assist ODA and DEQ to better understand why nitrate-nitrogen concentrations persist at higher than acceptable levels, aquifer inter-connectivity and barriers to groundwater flow, and in developing an approach to reduce nitrate-nitrogen levels in all or parts of the the Lower Umatilla Basin Groundwater Management Area (LUBGWMA).

Based on previous work and work that will take place from January 2022 to June 2023 (Appendices A and B), we propose to approach the project through **three primary components**: quarterly updates; conducting a science-based review of existing data and information; and project management and communication. The **final products of the project** are:

- Exploration of the feasibility and effectiveness of possible LUBGWMA Sub-region delineation based on hydrology as well as measured contaminant levels in the sub-regions (Scoping; see Appendices A and B)
- If sub-region delineation is identified as a viable and effective strategy, proposed Sub-regionspecific actions, including but not limited to addressing: land use practices/loading, remediation, and legacy issues (old well construction practices, plumes, etc.) (Component 1)
- A report on areas of the LUBGWMA where aquifer connectivity cannot be confirmed using existing data and findings and a strategy or recommendations for achieving monitoring and data control over areas of inference.
- Proposed monitoring strategy to demonstrate the effectiveness of the actions toward reducing contamination levels to those under the declaration standards in ORS 468B.180 (Component 2)
- A hand-off strategy that outlines recommendations for additional work, funding, and other resource requirements (Component 1)

# Components

#### **Component 1: Quarterly Meetings**

 Task 1a. Coordinate with stakeholders, agency staff, and LUBGWMA committee members for quarterly update meetings as needed.

*Deliverables.* Quarterly meeting briefing packets and meeting agendas.

*Final product.* Meeting summaries.

# Component 2: Science-based, authoritative review of existing data and information

Post-doctoral scholar will compile and review existing data and information to understand what the existing data is saying about the hydrogeology of nitrates and groundwater compartmentalization in the Lower Umatilla Basin, identify hydrogeologic data gaps, and recommend additional data collection needed to better identify groundwater compartments.

- Task 2a. Coordinate with OSU Extension, state, local and Tribal agencies to make sure that all data and information relevant to and within the LUBGWMA is integrated, archived and readily accessible for review. As a starting point all relevant existing data and information should be in one location, noting its source, year, location, and other relevant metadata. For this task, we are relying on this collection of data and information being compiled and made accessible by other parties during Phase I (see Appendices A and B).
- Task 2b. Write draft and final report.

*Deliverables.* Draft and final reports of findings developed by the post-doctoral scholar, final PowerPoint presentation

*Final product*. A report of additional research needs for better definining aquifer architecture, and monitoring necessary to address/support actions to reverse nitrogen levels in the LUBGWMA within four months of the end of the designated project end date.

#### **Component 3: Project management and communication**

- **Task 3a.** Track budget, tasks and recommend changes as needed to meet project goals.
- **Task 3b.** Ongoing communication and coordination with ODA and DEQ lead staff.

# Project Dates 1 January 2022 - 30 June 2023

The proposed scope of work is designed to enhance the culture of integrity, and strengthen the objectivity, transparency, and rigor of the process. As such, IWW-INR aims to:

- Be objective and impartial in producing and delivering the project products.
- Ensure collaboration by engaging with ODA, DEQ, other water-related state agencies, local agencies, LUBGWMA stakeholders and committee members, and designated Tribal experts throughout the project and maintaining open and fluid communications thereby providing and receiving important feedback throughout the project.
- Be transparent and committed to open access of information by clearly articulating the methodology used, documenting activities and making project-related information readily accessible.
- Be efficient and cost-effective when conducting the process and review, and strategically using the time and knowledge of science experts, as needed.

# Budget

Budget for the Post-doctoral Scholar is listed below.

|                            |          |         | Year No. 1 |           | Year No. 2 (6 months) |           |  |
|----------------------------|----------|---------|------------|-----------|-----------------------|-----------|--|
| Cost Category              | Rate     | Unit    | Units      | ODA       | Units                 | ODA       |  |
| 1. Salaries and Wages      |          |         |            |           |                       |           |  |
| Post Doctoral Scholar      | variable | month   | 12         | \$57,456  | 6                     | \$28,728  |  |
| Scott Lukas (1.0 FTE)      | \$8,752  | month   | 1          | \$8,752   | 1                     | \$8,927   |  |
| Todd Jarvis (0.5 FTE)      | \$4,730  | month   | 1          | \$4,730   | 1.25                  | \$6,030   |  |
| Faculty Researcher         | \$7,000  | month   |            |           | 3                     | \$21,000  |  |
| 2. Fringe Benefits         |          |         |            |           |                       |           |  |
| Post Doctoral Scholar      | 36%      |         |            | \$20,684  |                       | \$10,342  |  |
| Scott Lukas                | 55%      |         |            | \$4,834   |                       | 4,930     |  |
| Todd Jarvis                | 54%      |         |            | \$2,554   |                       | \$3,256   |  |
| Faculty Researcher         | 50%      |         |            |           |                       | \$10,500  |  |
| 3. Tuition                 |          |         |            |           |                       |           |  |
| Graduate Tuition & Fees    | \$0      | term    | 0          | \$0       | 0                     | \$0       |  |
| 4. Supplies                |          |         |            |           |                       |           |  |
|                            | \$0      | various | 1          | \$0       | 1                     | \$0       |  |
| 5. Equipment               |          |         |            |           |                       |           |  |
| 6. Services or Consultants |          |         |            |           |                       |           |  |
| 7. Travel                  |          |         |            |           |                       |           |  |
| Post Doc & PI Travel       | \$3,000  | various | various    | \$3,000   | various               | \$2,000   |  |
| 8. Other direct costs      |          |         |            |           |                       |           |  |
| 9. Total direct costs      |          |         |            | \$102,009 |                       | \$95,714  |  |
| 10. Indirect costs         |          |         |            |           |                       |           |  |
| (State Agency @ 26%)       | 26.0%    |         |            | \$26,522  |                       | \$24,886  |  |
| 11. Total estimated costs  |          |         |            | \$128,532 | 1                     | \$120,600 |  |

# **Budget Justification**

1. 1. Post-doc stipend variable depending on experience and increase each year. Rate dictated by OSU Post-Doc handbook (<u>https://gradschool.oregonstate.edu/sites/gradschool.oregonstate.edu/files/postdoc-handbook-2020.pdf</u>). Lukas and Jarvis salaries adjusted 2% per year. Approximately 3.0 months of staff time associated with the Institute for Natural Resources (INR). INR staff will be selected on the basis of staffing needs as the research enterprise is better defined.

2. Fringe benefits are variable based on the personnel at the standard and current Oregon State University rates for tenured and non-tenured faculty employees.

3. No funding for tuition is requested.

- 4. No funding for miscellaneous meeting and workshop supplies is requested.
- 5. No funding for equipment is requested.
- 6. No funding is requested for part-time coordination.
- 7. Travel Miscellaneous travel for OSU PIs and Post-doc.
- 8. No funding requested for other direct costs.
- 9. Total direct costs for all participants.
- 10. Oregon State University's indirect cost rate for all state agencies is 26%

# Appendix A Phase I (In-Kind): Scoping

Tasks include, but are not limited to:

- First iteration, using best available data, of LUBGWMA sub-regions based upon hydraulic connectivity (contributors: CTUIR (Kate Ely), OWRD Groundwater Section, Private reports (POM, UBWC Groundwater Model/recharge monitoring reports, LUBGWMA Committee Data analysis, etc.)
- 2. Complete literature review of all data and reports generated in the LUBGWMA to date, via OSU Extension's workgroup.
- 3. Develop criteria for and make a formal recommendation from LUBGWMA regarding appointed participants to Committee (NOWA/LUBGWMA)
- 4. State appointees.
- 5. NGO Participants.
- 6. Make the collection of compiled data and information accessible by other parties, and in accepted formats.

# Appendix B Phase I Post-doctoral Position Scoping

**Year 1:** Harmonize various hydrogeologic conceptual models. Compare and contrast various hydrogeologic conceptual models including boundary conditions for any analytical or numerical models of the groundwater system. Compile and correlate groundwater flow, monitoring, barrier to flow, well construction, sub-area, cone of depression and other data sets compiled by ODA, OWRD, OHA, DEQ and public & private monitoring and permit reports to complete the following:

- a. Compile and present report within 1 year from contract issuance on:
  - i. Regions of the 352,000 acre LUBGWMA that have monitoring and regulatory control data and where facts indicate that those regions are hydrologically disconnected from other areas of the LUBGWMA
  - ii. An inferred map showing areas where connectivity could or could not exist and the data gaps present that prevents conclusion.
  - iii. Obtain peer review and present results, amend accordingly or justify reasoning for maintaining positions
- Year 2: Develop one peer reviewed data set, using all data sets that better quantify and qualify:
  - a. Groundwater sub-areas based upon hydrology and hydrogeology, well construction, barriers to flow, pumping regime (i.e. cone of depression), and other man-made and natural indicators
  - b. Identify data gaps to development of sub-areas and recommend research, monitoring, modelling or other tools to fill data gaps
  - c. Develop a comprehensive LUBGWMA groundwater model or develop project plan for development of model to test scenarios in conjunction with LUBGWMA Task Force coordination.

d. Develop an estimate of the cost to establish monitoring control in areas where inference exists and where additional hydrogeologic and geochemical data needs to be generated to establish control (including drilling, sampling, and analytical costs, what types of analyses and frequency, and the timeline for establishing technically defensible conclusions).

This position will provide economic, environmental and social value to the people of Oregon by supporting the sustainable management of our State's water resources, which are necessary for agricultural production, environmental protection, and supporting the life and livelihoods of urban and rural water users. Furthermore, integrative water quality research in each of Oregon's diverse geology Oregon are transferrable globally to arid and wet landscapes and in locations.

Morrow and Umatilla Counties seek \$2.71 million to address domestic wells with high nitrate concentrations in underserved areas of northeastern Oregon. The Lower Umatilla Basin Groundwater Management Area (LUBGWMA) is an area of known groundwater contamination. The LUBGWMA was designated a Groundwater Management Area by the State of Oregon in 1990 (Oregon Revised Statute 468B.150-190), due to groundwater nitrate concentrations exceeding 70% of the Safe Drinking Water Act (SDWA) maximum concentration level. The two counties are home to the largest Latinx populations in Oregon; several communities within the region have high poverty rates. The requested funding will provide for a comprehensive inventory of domestic wells. The program would include development of bi-lingual education and outreach, and a feasibility analysis of options for remediation or alternative water supply for affected homes. The program will protect and enhance home values and create the potential for establishment of a revolving loan program. Both counties are committed to ensuring clean drinking water for their residents, and priority will be given to vulnerable and underserved populations in areas with high nitrate groundwater concentrations. Evaluation of project effectiveness will be measured by tallying the total number of wells-inventoried and tested, and then the number of wells that meet or are below the SDWA maximum concentration level. The funding will complement recent investments by the Oregon Legislature to research the hydrology and geology of the LUBGWMA to identify and target nitrate reduction efforts. Additional state funding is being requested to provide treatment options for impacted wells.

| Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Amount                                                | Status of Phase<br>(Not Yet Begun in Progress, or Completed)                           | Comments and/or Details                                                                                                                                                                                    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Stakeholder organization/outreach                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$             | 10,000.00                                             | not yet begun                                                                          | Stakeholder meetings, organization and outreach                                                                                                                                                            |  |  |
| Soft Costs, Design, Permitting/Planning                                                                                                                                                                                                                                                                                                                                                                                                                             | \$             | 150,000.00                                            | not yet begun                                                                          | mapping, research, outreach, coordination w landowners                                                                                                                                                     |  |  |
| Volunteer testing                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$             | 15,000.00                                             | Made available                                                                         | \$30 per test, voluntary as they come forward in kickoff                                                                                                                                                   |  |  |
| Field Work                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$             | 100,000.00                                            | not yet begun                                                                          | Education, assisted testing, result education                                                                                                                                                              |  |  |
| Testing availability                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$             | 40,000.00                                             | not yet begun                                                                          | Testing/education events, access and promotion events                                                                                                                                                      |  |  |
| Equipment*                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$             | 1,035,000.00                                          | proposed                                                                               | \$450/each average price plus replacement filters                                                                                                                                                          |  |  |
| FTE or contract to administer                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$             | 250,000.00                                            | proposed                                                                               | Full time active for project and initial capacity building                                                                                                                                                 |  |  |
| Outreach                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$             | 150,000.00                                            | not yet begun                                                                          | includes bi-lingual communication media and events                                                                                                                                                         |  |  |
| Other (please elaborate in comments/details)                                                                                                                                                                                                                                                                                                                                                                                                                        | \$             | 75,000.00                                             |                                                                                        | RFP, contracting, design and legal                                                                                                                                                                         |  |  |
| Data Dashboard for GWMA project                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$             | 20,000.00                                             |                                                                                        | Data complilation and online access                                                                                                                                                                        |  |  |
| Preliminary Engineering Feasibility                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$             | 715,000.00                                            |                                                                                        | Study extension of municipal systems and community systems                                                                                                                                                 |  |  |
| Temporary Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$             | 150,000.00                                            |                                                                                        | Water Coupons, bottled water or fresh water service                                                                                                                                                        |  |  |
| al Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$             | 2,710,000.00                                          |                                                                                        |                                                                                                                                                                                                            |  |  |
| Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Amount                                                | Status of Funding<br>(eg: application submitted, funding awarded,<br>funding received) | Comments and/or Details                                                                                                                                                                                    |  |  |
| Federal Funding (eg: EPA Brownfields                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
| Funding, HOME funding, federal tax credits,                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                       | =                                                                                      |                                                                                                                                                                                                            |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                       |                                                                                        |                                                                                                                                                                                                            |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond                                                                                                                                                                                                                                                                                                                                                                                                             | \$             | 50,000.00                                             | Requested IN KIND                                                                      | Office Space/Morrow and Umatilla Counties, drop in and long ter                                                                                                                                            |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)                                                                                                                                                                                                                                                                                                                                                                                | \$<br>\$       |                                                       | Requested IN KIND<br>Requested IN KIND                                                 | Office Space/Morrow and Umatilla Counties, drop in and long ter<br>Mapping/GIS support (in kind)                                                                                                           |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund                                                                                                                                                                                                                                                                                                                                                             |                | 25,000.00                                             |                                                                                        |                                                                                                                                                                                                            |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund                                                                                                                                                                                                                                                                                                                                           | \$             | 25,000.00                                             | Requested IN KIND                                                                      | Mapping/GIS support (in kind)                                                                                                                                                                              |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund                                                                                                                                                                                                                                                                                                                        | \$             | 25,000.00                                             | Requested IN KIND                                                                      | Mapping/GIS support (in kind)                                                                                                                                                                              |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,                                                                                                                                                                                                                                                                           | \$             | 25,000.00                                             | Requested IN KIND                                                                      | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others                                                                                            |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local                                                                                                                                                                                               | \$<br>\$       | 25,000.00<br>3,000.00                                 | Requested IN KIND                                                                      | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others                                                                                            |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income                                                                                                                                             | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00                 | Requested IN KIND                                                                      | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding                          |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income<br>for sustainability, the project be sustained                                                                                             | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00<br>1,113,000.00 | Requested IN KIND<br>Committed                                                         | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income                                                                                                                                             | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00                 | Requested IN KIND                                                                      | Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds                                  |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income<br>for sustainability, the project be sustained                                                                                             | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00<br>1,113,000.00 | Requested IN KIND<br>Committed                                                         | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income<br>for sustainability, the project be sustained<br>through fees, ratepayers, etc.)                                                          | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00<br>1,113,000.00 | Requested IN KIND<br>Committed                                                         | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2.General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income<br>for sustainability, the project be sustained<br>through fees, ratepayers, etc.)<br>1.                                                    | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00<br>1,113,000.00 | Requested IN KIND<br>Committed                                                         | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2. General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income<br>for sustainability, the project be sustained<br>through fees, ratepayers, etc.)<br>1.<br>2.<br>3.<br>Other Sources (please elaborate in | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00<br>1,113,000.00 | Requested IN KIND<br>Committed                                                         | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds |  |  |
| 2.<br>3.<br>Local or State Government Funding (eg: bond<br>votes, tax credits, etc.)<br>1. General Fund<br>2. General Fund<br>3. General Fund<br>Private or Nonprofit Funding (United Way,<br>individual donations, etc.)<br>State of Oregon (proposed)<br>Total Local<br>Project Income (If the project requires income<br>for sustainability, the project be sustained<br>through fees, ratepayers, etc.)<br>1.<br>2.<br>3.                                       | \$<br>\$<br>\$ | 25,000.00<br>3,000.00<br>1,035,000.00<br>1,113,000.00 | Requested IN KIND<br>Committed                                                         | Mapping/GIS support (in kind)<br>Testing already in motion, Morrow County<br>In Kind LUBGWMA volunteers, others<br>Proposed/coordinating with Oregon Health Authority for funding<br>Non CDS Federal Funds |  |  |

\*approximately 1300 in Morrow County \*approximately in 1000 Umatilla County

April 12, 2022 Version



(No acronyms please)

# **AGENDA ITEM COVER SHEET Morrow County Board of Commissioners** (Page 1 of 2)



# Please complete for each agenda item submitted for consideration by the Board of Commissioners (See notations at bottom of form)

Presenter at BOC: H Paul Gray Department: Emergency Management Short Title of Agenda Item: **FEMA Exercise Summary** 

Date submitted to reviewers: Requested Agenda Date: 5/4/2022

| This Item Involves: (Check a | Il that apply for this meeting.) |
|------------------------------|----------------------------------|
| Order or Resolution          | Appointments                     |
| Ordinance/Public Hearing:    | Update on Project/Committee      |
| 🔲 1st Reading 🔄 2nd Reading  | Consent Agenda Eligible          |
| Public Comment Anticipated:  | Discussion & Action              |
| Estimated Time:              | Estimated Time: 15 minutes       |
| Document Recording Required  | Purchase Pre-Authorization       |
| Contract/Agreement           | Other                            |
|                              |                                  |
|                              |                                  |

| N/A Purchas                             | Pre-Authorizations, Contracts & Agreements |
|-----------------------------------------|--------------------------------------------|
| Contractor/Entity:                      |                                            |
| Contractor/Entity Address:              |                                            |
| Effective Dates – From:                 | Through:                                   |
| Total Contract Amount:                  | Budget Line:                               |
| Does the contract amount exceed \$5,000 | 🗌 Yes 📕 No                                 |
|                                         |                                            |

| Reviewed | By: |
|----------|-----|
|----------|-----|

| H Paul Gray | 4/29/2022    | _Department Director | Required for all BOC meetings                                                                                         |
|-------------|--------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Danie S     | DATE<br>DATE | Administrator        | Required for all BOC meetings                                                                                         |
| l           | DATE         | _County Counsel      | *Required for all legal documents                                                                                     |
| ·           |              | Finance Office       | *Required for all contracts; other                                                                                    |
|             | DATE         |                      | items as appropriate.                                                                                                 |
|             |              | _Human Resources     | *If appropriate                                                                                                       |
|             |              |                      | all simultaneously). When each office has notified the submitting the request to the BOC for placement on the agenda. |

Note: All other entities must sign contracts/agreements before they are presented to the Board of Commissioners (originals preferred). Agendas are published each Friday afternoon, so requests must be received in the BOC Office by 1:00 p.m. on the Friday prior to the Board's Wednesday meeting. Once this form is completed, including County Counsel, Finance and HR review/sign-off (if appropriate), then submit it to the Board of Commissioners Office.

# AGENDA ITEM COVER SHEET Morrow County Board of Commissioners

row County Board of Commissio

(Page 2 of 2)

# 1. ISSUES, BACKGROUND, DISCUSSION AND OPTIONS (IF ANY):

To discuss and go over a FEMA Cascadia Subduction Zone Earthquake Exercise scheduled for June 27-July1, 2022, and those individuals needed and times associated with the exercise.

2022 was scheduled to be the year of the Cascadia Subduction Zone Earthquake Exercise by FEMA and FEMA Region X. Due to COVID and other factors, the exercise was canceled due to all FEMA Region X States pulling out from the exercise. With most of the Emergency Managers within Eastern Oregon Region being new, it was decided to have one county apply to FEMA and receive exercise help from them. Baker County applied and received funding to have FEMA come in and assist in creating an exercise for the Cascadia Subduction Zone Earthquake for all of Eastern Oregon. Each county will be testing out all or parts of plans to make sure plans are complete or to create new plans.

With fuel becoming a problem during this type of event, I will be designing with FEMA an exercise to go over fuel issues for Public Works and Law Enforcement. We will be including Public Health, Planning, and The Loop in this exercise.

June 27, 8 am-12 pm, will be a policy group meeting. from 1 pm-5 pm will be the exercise for the Department Heads of the mentioned departments above. June 28, 8 am-5 pm, will be a continuation for the Department Heads. June 30-July 1, 8 am-5 pm (or until completion), will be a tabletop exercise located at the Umatilla County Sheriff's Office. One Commissioner is requested for the June 30 meeting in Umatilla County.

# 2. FISCAL IMPACT:

None

# 3. SUGGESTED ACTION(S)/MOTION(S):

Commissioners, who would like to attend the meetings/exercise would be needed on June 27, 8 am-12 pm, to go over policy decisions to the event (exercise). One Commissioner is requested for the June 30 date, and would probably only be needed in the morning hours.

Attach additional background documentation as needed.



110 N Court St. • P.O. Box 788 Heppner, OR 97836 541-676-5613 www.co.morrow.or.us

# **BOARD OF COMMISSIONERS**

Jim Doherty, Chair Melissa Lindsay, Commissioner Don Russell, Commissioner

May 4, 2022

Office of Rural Development United States Department of Agriculture 1400 Jefferson Dr., S.W. Rm 240-E Washington D.C. 20024

RE: Letter of Support - LimitBid Packing Grant Application

Dear Undersecretary Xochitl Torres Small,

We are writing in support of the LimitBid Packing application for a USDA Meat and Poultry Processing Expansion Program (MPPEP) grant. The plans and stated values of this company founded by an area rancher, align with the letter and the spirit of the program. We are looking forward to all they will accomplish for, and with, local farmers, ranchers and Oregon communities.

A new beef processing plant to the scale LimitBid Packing is proposing would provide meaningful competition in a consolidated portion of the supply chain. This additional local processing capacity will support thousands of local cattle ranchers with another marketing avenue and alleviate the current processing bottleneck, which limits prices paid to producers.

The many benefits embedded in this project are exciting and worthy of MPPEP financial assistance. They include living wage jobs, a reduction in food production miles and carbon footprint, all while supporting economic opportunities for our rural communities. These factors should propel the project forward without delay as the need is here and now.

LimitBid Packing stands out as a strong applicant for MPPEP due to its unique footing in traditional ranching. They have a commitment to build the facility with technology that will provide product transparency and traceability, both of which are in high demand domestically and in the geographically-accessible markets of Asia. The focus on sourcing cattle that are produced using sustainable, regenerative methods, combined with the processing facility technology to track beef cuts back to the ranch-level, poise this project to have a great positive impact to the Northwest beef industry. This is exactly the type of product customers demand in our modern market.

Thank you for your consideration,

Jim Doherty Chair Melissa Lindsay Commissioner Don Russell Commissioner

#### INTERGOVERNMENTAL AGREEMENT FOR CREATION AND MANAGEMENT OF THE COLUMBIA RIVER ENTERPRISE ZONE III INCLUDING APPOINTMENT OF THE BOARD OF DIRECTORS AND DUTIES OF THE BOARD

THIS INTERGOVERNMENTAL AGREEMENT (IGA) is made and entered into pursuant to Oregon Revised Statute (ORS) Chapter 190 by and between Morrow County and the Port of Morrow hereafter referred to as the "Entities." Each "Entity" is also a Sponsor as defined by ORS 285C.050(19). This IGA is for the purpose of creating and establishing a Board of Directors which will manage the Columbia River Enterprise Zone III (CREZ III). Each party to this agreement has the following common objectives:

- Provide more jobs in new and existing industries for all of our residents.
- Increase the diversity of the economy, reducing the effect of economic fluctuations in single industries.
- Increase diversification of job opportunities, to provide workers greater choice for advancement.
- Raise the general level of income of residents.
- Expand the tax base to share the costs of providing schools, public improvements and other local government services.

The Entities desire to create an intergovernmental entity which will govern, supervise, manage and implement the operation of the CREZ III to fulfill the objectives as listed above.

The name of this intergovernmental entity shall be the CREZ III Board of Directors, hereinafter referred to as the Board.

# I. Organization of the Board:

A. Appointment of Individuals to the Board of Directors:

To accomplish the objectives set forth in this Intergovernmental Agreement, the CREZ III shall be governed by a Board of Directors comprised of six (6) Directors. Each board member shall have one (1) vote. Each Entity shall appoint three (3) Directors, at least one (1) of whom shall be an elected official, to serve on the Board. The Board will determine voting approval by requiring majority vote by each sponsor entity (i.e., for an affirmative or approval vote for the CREZ III, County would need to have at least 2 County appointed Directors vote in favor of affirming or approving an action). The minimum vote allowed for approval of any action shall be 4 out of 6 (2 votes to approve from each sponsor entity).

Each entity shall appoint its members of the Board, including alternate members and replacement members, for such terms and under such conditions as each Entity deems appropriate. Each Board member serves at the pleasure of the Entity which appoints them. It shall be the responsibility of each Entity to arrange for an alternative Board member in case of their absence.

Boundaries for determining specific and local municipality (City) involvement or voting authority will be determined by designated area of influence around each city, as described in map identified at Exhibit B. When a project is in a City's

Columbia River Enterprise Zone III - Intergovernmental Agreement

area of influence as identified in Exhibit B, the Intergovernmental Agreement attached as Exhibit C shall be the governing management agreement for the CREZ III (i.e. if the project is in the Boardman area of influence, then the IGA with Boardman will be the managing agreement).

# B. Selection and Duties of the Board's Chair and Vice-Chair:

The Board of Directors shall elect a Chair, and Vice-Chair to serve in the Chair's absence, at the first meeting of the Board and thereafter in January of each year. The Chair shall conduct the meetings of the Board and assume such other duties and responsibilities as are delegated to them by the Board, but shall have no greater voting rights than any other Board member. The Vice-Chair shall preside over meetings in the absence of the Chair.

# II. Management of the Board:

A. Duties of the Board:

The duties of the Board shall include those required by law as outlined in ORS 285C governing enterprise zones, as listed below.

- Notify the Oregon Business Development Department, the County Assessor and the Department of Revenue of the appointed Enterprise Zone Manager.
- Provide enhanced local public services, local incentives and local regulatory flexibility to authorized or qualified business firms.
- Review and approve or deny applications for authorization.
- Assist the County Assessor in administering the property tax exemption and in performing other duties assigned to the Assessor under pertinent statute or rule.
- Maintain, implement and periodically update a plan for marketing the CREZ III, to include strategies for retention, expansion, start-up and recruitment of eligible business firms.
- Manage the CREZ III in accordance with governing statute.
- Maintain a record of property within the CREZ III and manage boundary changes to accommodate business opportunities. Boundary changes will require approving resolutions by each Sponsor prior to being amended.
- Develop and maintain policies by which the CREZ III Board will operate when negotiating with businesses and share those policies with other partners in the enterprise zone program.
- Conduct, as needed or requested, annual reporting of activity within the CREZ III for the County Assessor or the Oregon Business Development Department.
- B. Enterprise Zone Staff: The Board may engage on its own or through a sponsor organization the following staff: Enterprise Zone Manager, County Assessor and legal counsel.
  - Selection and Duties of the Enterprise Zone Manager: The Board shall appoint an Enterprise Zone Manager. Each member Entity shall ratify the nominee prior to appointment. The Enterprise Zone Manager shall be advisory and serve in an ex-officio capacity at all Board meetings.

The duties of the Enterprise Zone Manager shall include those required by law, including the duties of the zone sponsor as outlined in ORS governing enterprise zones, as listed above, and such other duties and responsibilities as determined by the Board.

Columbia River Enterprise Zone III - Intergovernmental Agreement

Additionally, the Enterprise Zone Manager shall maintain the official documents and records of the CREZ III. These will include the minutes, agreements and orders produced by the Board. All documents will be maintained in a secure fire-safe location to be determined by the Board.

2. Duties of the County Assessor:

The County Assessor may be a Board member, but also provides essential duties for the Board in their role as County Assessor. The Board looks to the County Assessor, or their designee, for information and data related to the assessment and taxation of various industries and companies that engage in the various tax abatement programs administered under this IGA. Additionally, the County Assessor is responsible for billing based on company agreements and receipt of funds on behalf of the Board to assure payment amounts correspond to the agreement and the billing. Funds would then be forwarded to the Fiscal Agent.

3. Selection and Duties of Legal Counsel:

The Board may have need to engage the services of an attorney to provide legal counsel for any number of reasons, including but not limited to, agreements with businesses, amendments to this Intergovernmental Agreement, and agreements governing how Enterprise Zone collected monies will be spent. Use of legal counsel shall be authorized on a case-by-case basis by the Board.

4. Selection and Duties of Fiscal Agent:

The Board will determine a Fiscal Agent to hold funds for use by the Board. The Fiscal Agent will be responsible for maintaining both the application fees and the company paid funds. Additionally, the Fiscal Agent will be responsible for distributing both the application fee and the company paid funds as directed by Order(s) passed by the Board.

- C. Meetings of the Board:
  - 1. Meeting Schedule:

Meetings of the Board may be called by the Enterprise Zone Manager, Chairman or any four (4) Directors.

Notice of general meetings shall be provided by email to each Director and interested individuals in a timely manner, generally more than seventy-two (72) hours prior to the meeting. Notice of special meetings shall be given to each Director and interested individuals by email at least twenty-four (24) hours prior to the meeting.

The location of such meeting(s) shall be in Morrow County, Oregon and designated within the meeting notice. Meetings will generally be held at the Port of Morrow facilities in Boardman, however meetings can be held in alternate Morrow County locations. Telephonic or other alternate electronic device(s) options will be available, when requested, to facilitate attendance of all Directors.

2. Public Meetings Process:

Meetings of the Board are considered "Public" as defined by ORS 192 and shall be noticed as such. Negotiations with companies may be done under the Executive Session criteria found at ORS 192.660. Executive Sessions shall be announced at the beginning, citing the statutory allowance, and after closure, a statement shall be made concerning the outcome.

Notice shall be provided to the media and other interested parties of all meetings held.

Minutes shall be taken by the Enterprise Zone Manager.

A quorum for a meeting shall be constituted when four (4) Directors, 2 from each entity, are present in person, by alternate, by telephone or by other alternate electronic device(s) and when each Entity is represented at a meeting at which notice is properly given. Any member may waive the notice requirement either by writing or by appearing at the meeting. Any decision made during a meeting attended by a quorum of members must be by the majority of the Board not the majority of the quorum present.

When a project is in a city's area of influence as identified in Exhibit B: A quorum for a meeting shall be constituted when six (6) Directors, 2 from each entity, are present in person, by alternate, by telephone or by other alternate electronic device(s) and when each Entity is represented at a meeting at which notice is properly given. Any member may waive the notice requirement either by writing or by appearing at the meeting.

#### III. Powers of the Board:

The entities delegate to the Board the powers set forth below and as provided in this agreement.

A. Application Fees:

The Board will establish a schedule of application fees as allowed by ORS 285C to be paid by applicants. Said application fees will be used to support the business of the Board, including but not limited to, support of the Enterprise Zone Manager, legal counsel as needed, meeting support and necessary supplies.

B. Applications:

The Board, through the Enterprise Zone Manager, shall receive and review requests for tax abatement from eligible businesses. The intent is to act promptly on applications deemed complete by the Enterprise Zone Manager and finalize negotiations within 90 days.

Policies adopted by the Board will provide guidance to applicant companies as to how offers should be submitted and the local objectives of the enterprise zone program.

C. Negotiations:

The Board shall negotiate the terms of any enterprise zone request as allowed by enterprise zone rules that govern the statewide program, and is authorized to approve or deny a tax exemption request extending benefits to authorized

Columbia River Enterprise Zone III - Intergovernmental Agreement

companies beyond the standard three (3) years, and enter into the binding agreement. This Intergovernmental agreement grants authority for binding agreements with authorized companies.

After binding agreement has been entered into, sponsor entities agree to approve or deny adopting resolutions within 30 days of being notified of the agreement by CREZ III.

Recommendations and requests from affected Special Districts of potential impacts involving the service provided by said Districts, including but not limited to, fire protection and public safety, may be considered.

Policies guiding negotiations will also be adopted to achieve transparency and to maintain consistency in the negotiations process. Adopted policies will be aligned with enterprise zone rules that govern the statewide program.

#### D. Distribution of Fees:

Company paid fees will be distributed by the Board of Directors, including city if applicable project is in an area of influence, as depicted on attached Exhibit B with the following considerations:

- Distribution will be consistent with company agreements when applicable.
- Distribution will be done at least annually.
- Distribution in future years does not have to reflect distribution patterns set in previous years.
- Distribution will be carried out by the Fiscal Agent based on Order(s) passed and approved.
- Distribution formulas for community or economic development groups will use the Portland State University population numbers.
- Distribution of funds is only done during a meeting that the full Board is represented. In addition to the above requirement, at least two affirmative votes from each entity shall be required to pass a motion regarding distribution of funds.
- If at least two affirmative votes are not cast from each entity and the motion fails, nothing shall prevent the Board from attempting to distribute said money in a future vote.
- If an agreement for distribution cannot be reached, the Board shall vote to indicate that an impasse has been reached and the motion shall specifically identify the funds that are subject to the impasse and the source of those funds.

# IV. Amendments:

Amendments to this Intergovernmental Agreement may be initiated by the Board or by any Sponsor Entity with written notice to the other Sponsor Entities. Proposed amendments to the Intergovernmental Agreement can only be adopted with approval of both Sponsor Entities.

Should any term or provision of this Intergovernmental Agreement be affected by changes in state law or rule, or be determined illegal by a court of competent jurisdiction, the validity of the remaining terms and provisions shall not be affected and shall remain in effect.

Columbia River Enterprise Zone III - Intergovernmental Agreement

#### V. Termination:

This Intergovernmental Agreement as it governs negotiations with eligible firms, terminates upon the Expiration of the CREZ III designation as provided in the 2020 Director's Confirmation of Positive Determination dated October 2, 2020. The date the CREZ III expires is June 30, 2025.

If the Entities make application to continue the CREZ III, this Intergovernmental Agreement may need to be extended and/or may be reviewed and amended. Alternatively, should the Entities desire to terminate the Zone prior to its expiration, the procedures outlined in Oregon Revised Statute and Oregon Administrative Rule shall be followed.

Company paid funds will continue to be collected beyond the current life of the CREZ III. This Intergovernmental Agreement will continue to govern the distribution of those payments until all negotiated agreements are fulfilled, unless this Intergovernmental Agreement is replaced with a subsequent agreement to direct those company paid fees according to statute and rule governing the statewide enterprise zone program.

IN WITNESS WHEREOF, the Parties, by their respective duly authorized representatives, have executed this Intergovernmental Agreement. This Intergovernmental Agreement can be executed in parts and is effective on the date the last Sponsor Entity signs.

# **Morrow County Board of Commissioners**

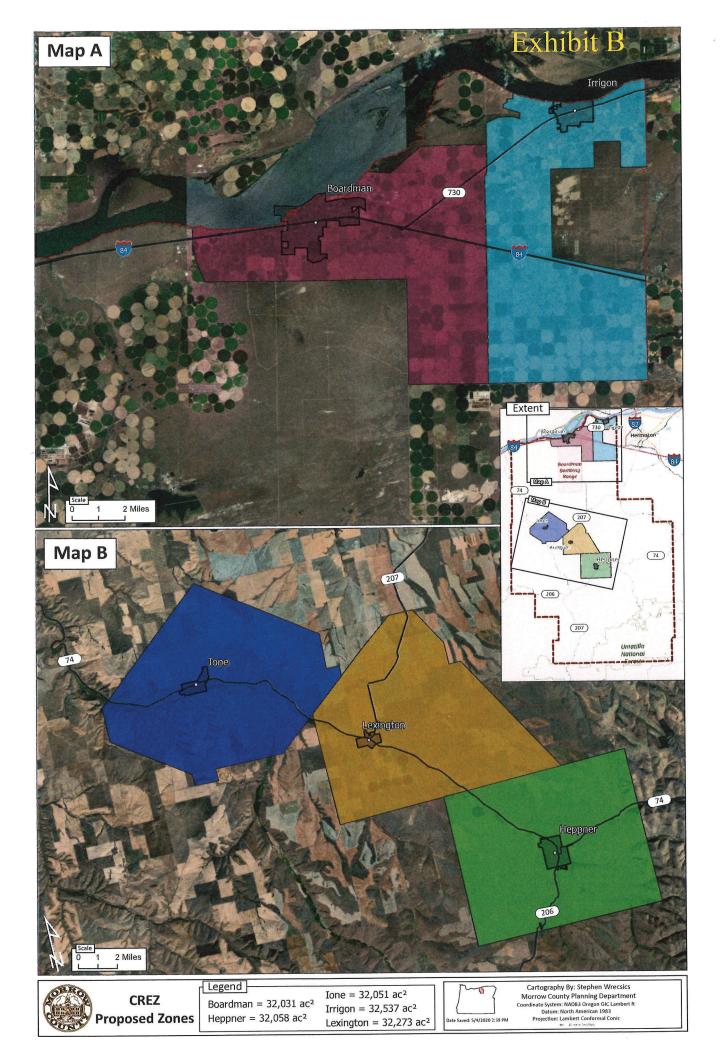
Dated this 27th Day of January 2021

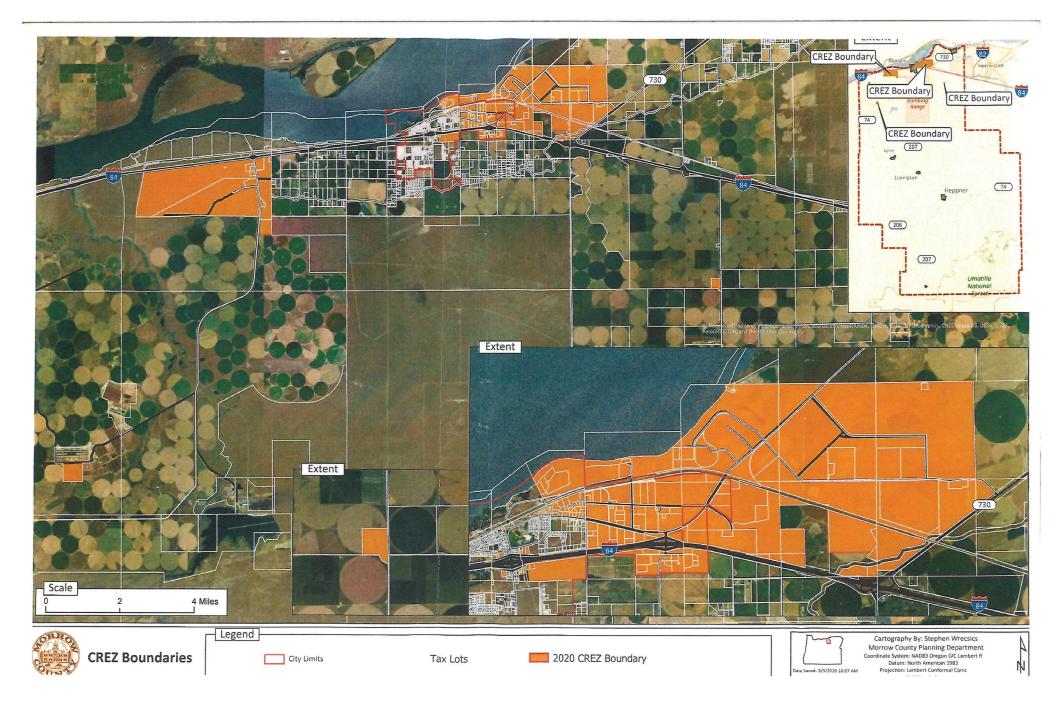
Don Russell, Chair

Jim Doherty, Commissioner

Melissa Lindsay, Commissioner

**Port of Morrow** 


Dated:


R. A. Stokøe, President

R. A. Stokoć, President

ATTEST:

Joe Taylor, Secretary





## INTERGOVERNMENTAL AGREEMENT FOR THE COLUMBIA RIVER ENTERPRISE ZONE III, WITHIN A CITY AREA OF INFLUENCE INCLUDING APPOINTMENT OF THE BOARD OF DIRECTORS AND DUTIES OF THE BOARD

THIS INTERGOVERNMENTAL AGREEMENT (IGA) is made and entered into pursuant to Oregon Revised Statute (ORS) Chapter 190 by and between Morrow County, the Port of Morrow and CITY hereafter referred to as the "Entities." The Sponsors of CREZ III are Morrow County and Port of Morrow as defined by ORS 285C.050(19). This IGA is for the purpose of establishing a Board of Directors which will manage the CREZ III when a project lies within a city area of influence as identified on Exhibit B attached. This IGA will be attached as Exhibit C to the IGA between Port and Morrow County that creates and manages the CREZ III. Each party to this agreement has the following common objectives:

- Provide more jobs in new and existing industries for all of our residents.
- Increase the diversity of the economy, reducing the effect of economic fluctuations in single industries.
- Increase diversification of job opportunities, to provide workers greater choice for advancement.
- Raise the general level of income of residents.
- Expand the tax base to share the costs of providing schools, public improvements and other local government services.

The Entities desire to create an intergovernmental entity which will govern, supervise, manage and implement the operation of the CREZ III when a project lies within a city area of influence to fulfill the objectives as listed above.

The name of this intergovernmental entity shall be the CREZ III Board of Directors, hereinafter referred to as the Board.

#### I. Organization of the Board:

- A. Appointment of Individuals to the Board of Directors:
  - To accomplish the objectives set forth in this Intergovernmental Agreement, when a project is within a city area of influence, CREZ III shall be governed by a Board of Directors comprised of nine (9) Directors. Each Board member shall have one (1) vote. Each Entity and city located in a project's zone of influence shall appoint three (3) Directors, at least one (1) of whom shall be an elected official, to serve on the Board. The Board will determine voting approval by requiring majority vote by each sponsor entity and city in a project's zone of influence (i.e., for an affirmative or approval vote for the CREZ III, County would need to have at least 2 County appointed Directors vote in favor of affirming or approving an action). The minimum vote allowed for approval of any action shall be 6 out of 9 (2 votes to approve from each sponsor entity and city in a project's zone of influence).

Each entity shall appoint its members of the Board, including alternate members and replacement members, for such terms and under such conditions as each Entity deems appropriate. Each Board member serves at the pleasure of the Entity which appoints them. It shall be the responsibility of each Entity to arrange for an alternative Board member in case of their absence.

Boundaries for determining any specific and local municipality involvement or voting authority will be determined by designated area of influence around each city, as described in map identified as Exhibit B.

B. Selection and Duties of the Board's Chair and Vice-Chair: The Chair and Vice-Chair to serve in the Chair's absence, will be those appointed in the IGA governing CREZ III between the Port and Morrow County.

# II. Management of the Board:

A. Duties of the Board:

The duties of the Board shall include those required by law as outlined in ORS 285C governing enterprise zones, as listed below.

- Notify the Oregon Business Development Department, the County Assessor and the Department of Revenue of the appointed Enterprise Zone Manager.
- Provide enhanced local public services, local incentives and local regulatory flexibility to authorized or qualified business firms.
- Review and approve or deny applications for authorization.
- Assist the County Assessor in administering the property tax exemption and in performing other duties assigned to the Assessor under pertinent statute or rule.
- Maintain, implement and periodically update a plan for marketing the CREZ III to include strategies for retention, expansion, start-up and recruitment of eligible business firms.
- Manage the CREZ III in accordance with governing statute.
- Maintain a record of property within the CREZ III. Develop and maintain policies by which the CREZ III Board will operate when negotiating with businesses and share those policies with other partners in the enterprise zone program.
- Conduct, as needed or requested, annual reporting of activity within the CREZ III for the County Assessor or the Oregon Business Development Department.
- B. Enterprise Zone Staff: The Board will have the following staff as appointed by the CREZ III IGA between the Port and Morrow County: Enterprise Zone Manager, County Assessor and legal counsel.
  - 1. Duties of the Enterprise Zone Manager:
    - Be advisory and serve in an ex-officio capacity at all Board meetings.
    - Those required by law including the duties of the zone sponsor as outlined in ORS governing enterprise zones.
    - Maintain the official documents and records of the CREZ III. These will include the minutes, agreements and orders produced by the Board. All documents will be maintained in a secure fire-safe location to be determined by the Board.
  - 2. Duties of the County Assessor:
    - Provides essential advisory duties.
    - Provide information and data related to the assessment and taxation of various industries and companies that engage in the various tax abatement programs administered under this IGA
  - 3. Duties of Legal Counsel:
    - Provide agreements with businesses.

- Provide amendments to this Intergovernmental Agreement.
- Use of legal counsel shall he authorized on a case-by-case basis by the Board.
- 4. Duties of Fiscal Agent:
  - Hold funds for use by the Board.
  - Maintaining both the application fees and the company paid funds.
  - Distribute both the application fee and the company paid funds as directed by Order(s) passed by the Board.
- C. Meetings of the Board:
  - 1. Meeting Schedule:

Meetings of the Board may be called by the Enterprise Zone Manager, Chairman or any five (5) Directors.

Notice of general meetings shall be provided by email to each Director and interested individuals in a timely manner, generally more than seventy-two (72) hours prior to the meeting. Notice of special meetings shall be given to each Director and interested individuals by email at least twenty-four (24) hours prior to the meeting.

The location of such meeting(s) shall be in Morrow County, Oregon and designated within the meeting notice. Meetings will generally be held at the Port of Morrow facilities in Boardman, however, meetings can be held in alternate Morrow County locations. Telephonic or other alternate electronic device(s) options will be available, when requested, to facilitate attendance of all Directors.

2. Public Meetings Process:

Meetings of the Board are considered "Public" as defined by ORS 192 and shall be noticed as such. Negotiations with companies may be done under the Executive Session criteria found at ORS 192.660. Executive Sessions shall be announced at the beginning, citing the statutory allowance, and after closure, a statement shall be made concerning the outcome.

Notice shall be provided to the media and other interested parties of all meetings held.

Minutes shall be taken by a designee of the Board and then held by the Enterprise Zone Manager.

When a project is in a city's area of influence as identified in Exhibit B: A quorum for a meeting shall be constituted when six (6) Directors, 2 from each entity, are present in person, by alternate, by telephone or by other alternate electronic device(s) and when each Entity is represented at a meeting at which notice is properly given. Any member may waive the notice requirement either by writing or by appearing at the meeting.

#### III. Powers of the Board:

The entities delegate to the Board the powers set forth below and as provided in this agreement.

A. Applications:

The Board, through the Enterprise Zone Manager, shall receive and review requests for tax abatement from eligible businesses. The intent is to act promptly on applications deemed complete by the Enterprise Zone Manager and finalize negotiations within 90 days.

Policies adopted by the Board will provide guidance to applicant companies as to how offers should be submitted and the local objectives of the enterprise zone program.

B. Negotiations:

The Board shall negotiate the terms of any enterprise zone request as allowed by enterprise zone rules that govern the statewide program, and is authorized to approve or deny a tax exemption request extending benefits to authorized companies beyond the standard three (3) years and enter into the binding agreement. This Intergovernmental Agreement grants authority for binding agreements with authorized companies.

After binding agreement has been entered into, sponsor entities and city agree to approve or deny adopting resolutions within 30 days of being notified of the agreement by CREZ III.

Recommendations and requests from affected Special Districts of potential impacts involving the service provided by said Districts, including but not limited to, fire protection and public safety, may be considered.

Policies guiding negotiations will also be adopted to achieve transparency and to maintain consistency in the negotiations process. Adopted policies will be aligned with enterprise zone rules that govern the statewide program.

#### C. Distribution of Fees:

Company paid fees will be distributed by the Board of Directors, including city if applicable project is in an area of influence as depicted on attached Exhibit B with the following considerations:

- Distribution will be consistent with company agreements when applicable.
- Distribution will be done at least annually.
- Distribution in future years does not have to reflect distribution patterns set in previous years.
- Distribution will be carried out by the Fiscal Agent based on Order(s) passed and approved.
- Distribution formulas for community or economic development groups may use the Portland State University population numbers.
- Distribution of funds is only done during a meeting that the full Board is represented. In addition to the above requirement, at least two affirmative votes from each entity shall be required to pass a motion regarding distribution of funds.
- If at least one affirmative vote is not cast from each entity and the motion fails, nothing shall prevent the Board from attempting to distribute said money in a future vote.
- If an agreement for distribution cannot be reached, the Board shall vote to

indicate that an impasse has been reached and the motion shall specifically identify the funds that are subject to the impasse and the source of those funds.

# IV. Amendments:

Amendments to this Intergovernmental Agreement may be initiated by the Board or by any Sponsor Entity with written notice to the other Sponsor Entities. Proposed amendments to the Intergovernmental Agreement can only be adopted with approval of the two Sponsor Entities and partnering entities.

Should any term or provision of this Intergovernmental Agreement be affected by changes in state law or rule; or be determined illegal by a court of competent jurisdiction, the validity of the remaining terms and provisions shall not be affected and shall remain in effect.

#### V. Termination of this Area of Influence IGA

This Intergovernmental Agreement as it governs negotiations with eligible firms with a city area of influence, terminates upon the Expiration of the CREZ III designation as provided in the 2020 Director's Confirmation of Positive Determination dated October 2, 2020. The date the CREZ III expires is June 30, 2025.

This Intergovernmental Agreement may need to be extended and/or may be reviewed and amended. Should the Entities desire to terminate the Zone prior to its expiration, the procedures outlined in Oregon Revised Statute and Oregon Administrative Rule shall be followed.

Company paid funds will continue to be collected beyond the current life of the CREZ III. This Intergovernmental Agreement will continue to govern the distribution of those payments until all negotiated agreements are fulfilled, unless this Intergovernmental Agreement is replaced with a subsequent agreement to direct those company paid fees according to statute and rule governing the statewide enterprise zone program.

IN WITNESS WHEREOF, the Parties, by their respective duly authorized representatives, have executed this Intergovernmental Agreement. This Intergovernmental Agreement can be executed in parts and is effective on the date the last Sponsor Entity signs.

# **Morrow County Board of Commissioners**

Dated this 27<sup>th</sup> Day of January 2021

Don Russell, Chair

Jim Doherty, Commissioner

Melissa Lindsay, Commissioner

**CREZ III - Intergovernmental Agreement with CITY** 

# Port of Morrow

Dated:

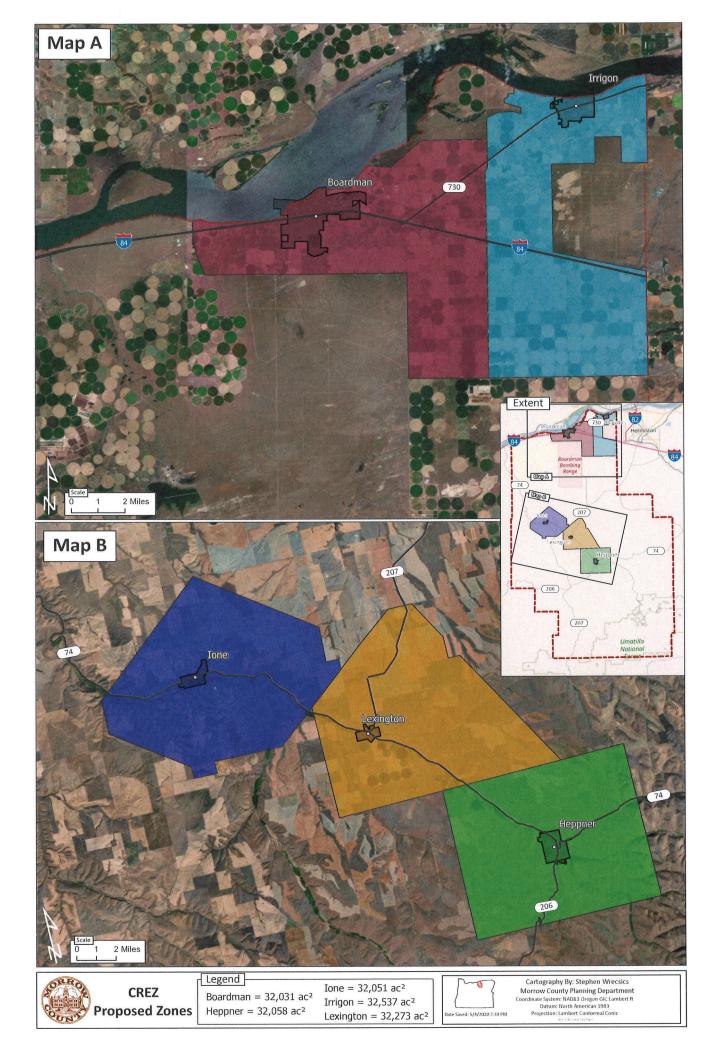
\_

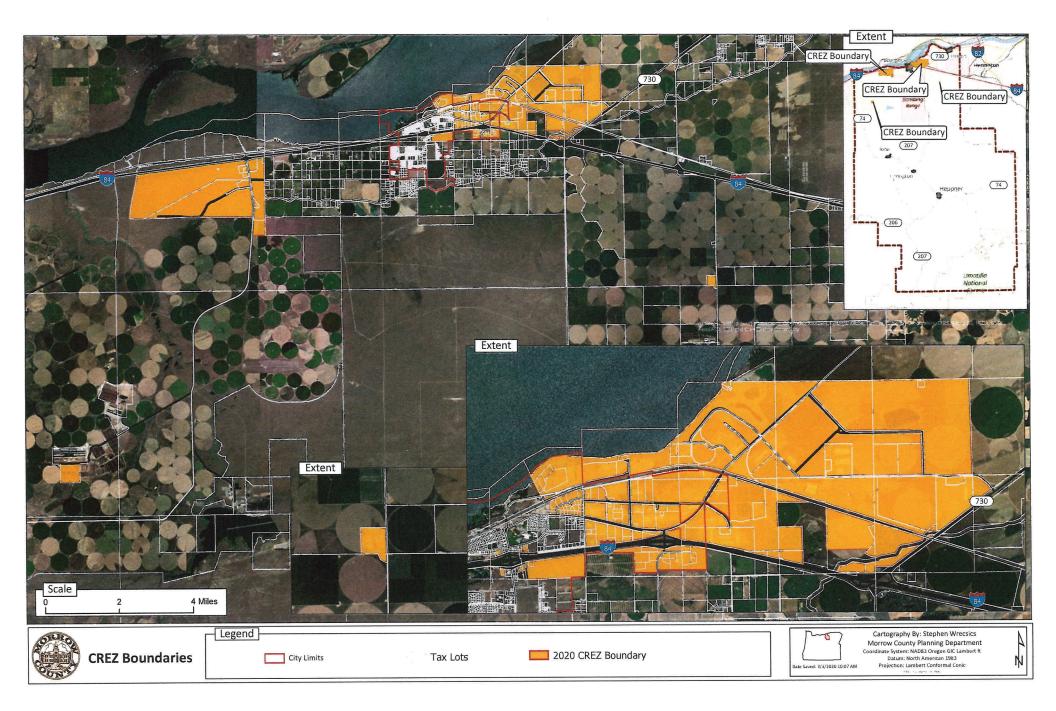
\_\_\_\_\_

R. A. Stokoe, President

ATTEST:

Joe Taylor, Secretary


# City of Boardman


Dated: \_\_\_\_\_

Paul Keefer, Mayor

ATTEST:

Karen Pettigrew, City Manager





**ASSESSMENT & TAXATION** 



P.O. Box 247 • Heppner, Oregon 97836 (541) 676-5607 FAX: (541) 676-5610 MIKE GORMAN Assessor/Tax Collector

6a

County Commissioners Administrative Staff,

# Assessment & Tax Department Report 5/4/2022

- 1. Tax Office
  - About \$959,800.00 of current year taxes left to collect from the \$43,706,964.97 which was levied. (Probably another record collection year)
  - Second Trimester notices were sent April 19, and are due May 15.
- 2. Appraisal staff
  - The Appraisal staff has been working diligently on the large amount of new construction and reviewing property sales for the annual sales ratio study. We will begin the ratio study in the next week or so. Three of the appraisal staff spent last week taking some "Virtual Continuing Education Training" sponsored by the Assessor's Association, to complete their continuing education credit requirements.

## 3. Assessor/Tax Collector

• I have completed budget estimates for districts, GASB 77 information for districts, submitted the CAFFA Grant and have been processing annual Enterprise Zone Claims. I have also been assisting the Morrow County We are busy reviewing several Subdivision, Partition Plats and Property Line Adjustments. I will begin working on the annual Farm Use Study, which calculates Farm Use Special Assessment values in the next few weeks. I have also been spending a large amount of time training the new front office staff since my deputy retired on April 1.

Respectfully Submitted,

Mike Gorman,

Morrow County Assessor/Tax Collector



# Morrow County Sheriff's Office - Monthly Stats

| 2022                    |      |      |       |       |                        |          |
|-------------------------|------|------|-------|-------|------------------------|----------|
| Incident                | Jan  | Feb  | March | April | May                    | June     |
| Alarms                  | 12   | 9    | 14    | 11    |                        |          |
| Animal Complaint        | 21   | 28   | 20    | 25    |                        |          |
| Agency Assist           | 17   | 19   | 24    | 13    | 38 a.M.                |          |
| Assaults                | 2    | 5    | 3     | 3     |                        |          |
| Burglary                | 2    | 3    | 1     | 3     |                        |          |
| CHL                     | 37   | 36   | 38    | 39    |                        |          |
| Citizen Assist          | 21   | 8    | 16    | 16    | ·                      | La La    |
| Civil Service           | 23   | 54   | 49    | 53    |                        |          |
| County Code Calls       | 6    | 9    | 31    | 34    | 1.2.2.2                |          |
| Heppner area            | 0    | 0    | 2     | 4     |                        |          |
| Irrigon area            | 6    | 9    | 28    | 26    |                        |          |
| Bdmn area               | 0    | 0    | 1     | 2     |                        |          |
| lone/Lex area           | 0    | 0    | 0     | 2     |                        |          |
| Death Investigation     | 3    | 3    | 2     | 2     |                        |          |
| Disturbance             | 9    | 12   | 16    | 3     |                        |          |
| Dog                     | 36   | 31   | 36    | 49    |                        |          |
| Driving Complaints      | 64   | 50   | 69    | 74    |                        |          |
| Drunk/Impaired Driver   | 0    | 3    | 3     | 1     |                        |          |
| EMS                     | 20   | 7    | 6     | 7     |                        |          |
| Hit & Run               | 3    | 5    | 5     | 2     |                        | - 1 S    |
| Juvenile Complaints     | 7    | 13   | 18    | 13    |                        |          |
| Motor Vehicle Crashes   | 22   | 6    | 3     | 12    |                        |          |
| RV Code                 | 0    | 0    | 0     | 0     |                        |          |
| Suicidal                | 2    | 3    | 3     | 0     |                        |          |
| Suspicious Activity     | 20   | 15   | 28    | 31    |                        |          |
| Theft                   | 12   | 7    | 11    | 13    |                        |          |
| Trespass                | 6    | 6    | 7     | 16    |                        |          |
| Traffic Stops - Cite    | 65   | 45   | 67    | 57    |                        |          |
| Total Traffic Stops     | 171  | 214  | 210   | 175   |                        | 1941     |
| UUMV-Stolen vehicle     | 9    | 3    | 4     | 6     |                        |          |
| Welfare Check           | 21   | 13   | 15    | 17    |                        |          |
| Totals                  | 611  | 607  | 699   | 675   |                        |          |
| Other Misc. Incidents   | 713  | 800  | 830   | 685   |                        |          |
| Total # of Incidents    | 1324 | 1407 | 1529  | 1360  |                        |          |
| Felony Arrests          | 11   | 10   | 7     | 11    |                        |          |
| Total # of Arrests      | 30   | 29   | 32    | 30    |                        |          |
| Total # M-110 Citations | 0    | 0    | 0     | 0     | 20-20-20 <sup>-0</sup> | 0.0.27.5 |



# Administration

P.O. Box 788 • Heppner OR 97836 (541) 676-2529 Fax (541) 676-5619 Darrell Green County Administrator dgreen@co.morrow.or.us

| то:   | Board of Commissioners                      |
|-------|---------------------------------------------|
| FROM: | Darrell Green, County Administrator         |
| DATE: | May 2, 2022                                 |
| RE:   | Administrator Monthly Report for April 2022 |

Below are the highlights for the month of April.

- North County Government Building update: The building is substantially completed! Paving and striping was
  completed and we conducted our final Punch Walk on April 28<sup>th</sup>. We should have blinds installed on the south end of
  the building on May 3<sup>rd</sup>, panic bars for the entry doors have been ordered. Our biggest project is installing our
  audio/visual equipment. We had a stakeholder meeting on April 25<sup>th</sup> to review the audio/visual set up. We expect
  some feedback from Avidex on the proposed set up in the next couple of weeks.
- 2. The Leadership TEAM: Kristen Bowles, John Bowles, Christy Kenny, Tamra Mabbot, Stephanie Case, Paul Gray and myself GRADUATED NACo's High Powered Leadership Academy on April 15th! Congratulations for completing an intense 12-week course on Leadership!
- 3. The Loop Bus Barn and Transit Facility: Katie and our realtor identified several properties for us to consider. We are working to secure a piece of property for the future site of the Loop Bus Barn and Transit Facility.
- 4. Finance Director update- On April 6<sup>th</sup>, the Board of Commissioners approved contracting with Christa Wolfe. Christa started on April 18<sup>th</sup> and has been working diligently to prepare us for our Budget Hearings that start May 10<sup>th</sup>. Prothman's recruitment for our next Finance Director ends on May 6<sup>th</sup>. We hope to have several applications and complete our interview process in May.
- 5. Mormon Crickets Mitigation- the bid process is complete. We hired GAR Aviation as our aerial applicator and Morrow County Grain Growers to supply the chemicals.
- 6. Other projects/activities;
  - a) Cybersecurity policy for Morrow County with Justin Nelson, Paul Gray and Jordan Standley.
  - b) Fairgrounds RFP for remodeling the Dormitory and Annex building.

Sincerel 100

Darrell J Green



SAVE THE DATE!

# 2022 BOARDMAN JOB FAIR

# **HOSTED BY**





- Talk with over 20 local employers who are actively hiring
- On the spot interviews
- Free resume building and interview assistance

# June 1, 2022

10 am-1 pm Port of Morrow Riverfront Center